The complete applications package
At Radiometer Analytical, we put applications first. When you order one of our new generation of titration workstations with a dedicated application package, you have everything you need to get started right away: electrodes, specific accessories, standards, maintenance solutions and, of course, methods and application notes.

Application booklets
Redox titrations are frequently used in many industries and involve potentiometric titrations with or without imposed current. Instructions for performing some of the most commonly used applications are given in this booklet together with calibration procedures for the corresponding titrants and electrodes. Certain modifications may be needed to take into account specific regulations or standards in force in certain countries, in particular regarding results presentation.

Radiometer Analytical produces other technique-based applications booklets as well as a range of applications dedicated to particular sectors. Ask your local representative for the following booklets:

<table>
<thead>
<tr>
<th>Technique</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid-base titrations</td>
<td>D41T009</td>
</tr>
<tr>
<td>Precipitation titrations</td>
<td>D41T010</td>
</tr>
<tr>
<td>Complexometric titrations</td>
<td>D41T011</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dedicated</th>
<th>Part No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food and beverage analysis</td>
<td>D41T004</td>
</tr>
<tr>
<td>Plating bath analysis</td>
<td>D41T005</td>
</tr>
<tr>
<td>Water and environmental analysis</td>
<td>D41T006</td>
</tr>
<tr>
<td>Chemical industries</td>
<td>D41T007</td>
</tr>
</tbody>
</table>

Our Applications Laboratory is continually developing new applications.

For the latest updates visit us at www.titration.com.
REDOX TITRATIONS

TTEP01.09MIN Operational Qualification (End Point Titration Manager)
TTIP01.01MIN Operational Qualification (Inflection Point Titration Manager)
TTEP01.03MIN Calibration of a Ferrous Solution
TTEP01.04MIN Calibration of an Iodine Solution
TTEP01.08MIN Calibration of a Thiosulphate Solution
TTEP01.03ENV Chemical Oxygen Demand of Water
TTEP01.02PLA Analysis of a Chromic Passivation Bath
TTEP01.07AFD Free Sulphur Dioxide in Wine
TTEP01.06MIN ClO⁻ Determination in Bleach - Direct Titration with NaAsO₂
TTEP01.07MIN ClO⁻ Determination in Bleach - Indirect Titration
TTIP01.02PET Bromine Number
TTEP-IP02.01AFD Vitamin C in Iodometry
TTIP02.03PLA Cu in Electroless Copper Baths Redox
TTIP02.01AFD Peroxide Number of Edible Oils
TTIP02.01MIN Hydrogen Peroxide Determination
TTEP-IP02.01ENV Dissolved Oxygen in Water
TTEP-IP02.02AFD Iodine Value of Animal and Vegetable Fats and Oils
End Point Titration Manager
Operational Qualification

Introduction
The operational qualification procedure demonstrates that an instrument runs according to the operational specifications in the selected environment. For an end point titration manager, this operation can consist of two steps:
- Calibration and checking of a pH measurement electrode system
- Titration of anhydrous sodium carbonate standard using a commercial standard solution of HCl.

Principle
The reaction has 2 steps
\[\text{Na}_2\text{CO}_3 + \text{HCl} \rightarrow \text{NaHCO}_3 + \text{NaCl} \]
\[\text{NaHCO}_3 + \text{HCl} \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{NaCl} \]
corresponding to 2 different end points.
The operational qualification takes into account the second equivalence point (pH 3.90) corresponding to the complete neutralisation of sodium carbonate.

Electrode and reagents
- pHC2011-8 Combined pH Electrode (part no. E16M317)
- T201 Temperature Sensor (part no. E51M001)
- IUPAC Series pH standards pH 4.005 (part no. S11M002), pH 7.000 (part no. S11M004) and pH 10.012 (part no. S11M007)
- 100 g bottle of Merck "certified" sodium carbonate (part no. 1.06392.0500) or 500 g bottle of "pro analysis" Merck sodium carbonate (part no. 1.06392.0500)
- 1 l of "ready to use" Merck HCl 0.1 mol/l (part no. 1.09060.1000)
- Distilled water

End Point titration settings
- electrode: pHC2011-8
- calibration request: YES
- number of cycles: 2
- number of buffers: 3
- measurement: stirring
- temperature: probe

Calibration parameters
- stability: 15 mpH/min
- acceptance time: 2.00 min
- max. stab. time: 5.00 min
- acceptance criteria: YES
- iso. pH: 6.65 pH

Calibration solutions
1: 4.005 (IUPAC)
2: 7.000 (IUPAC)
3: 10.012 (IUPAC)
- min. zero pH: 5.8 pH
- max. zero pH: 7.5 pH
- min. sensitivity: 95%
- max. sensitivity: 103%

Titrant
- id: HCI
- unit: M
- titre: entered

Method
- predose: see below
- start timer: 45 sec
- max. volume: see below
- number of EP: 1
- min. speed: 0.2 ml/min
- max. speed: 5.00 ml/min
- direction: decreasing pH
- end point: 3.90 pH
- delay: 10 sec
- proportional band: 3.00 pH
Results
Sample unit: mg
Number of result: 1
Acceptation criteria: YES
Result unit: %
Molar weight: 105.99
Reaction: 1 smp + 2 titr
Minimum value: 99
Maximum value: 101

Procedure

Electrode calibration and checking
If the electrode is new, condition it by immersion in distilled water for at least 1 hour
Connect the pH2011-8 combined pH electrode and the T201 Temperature Sensor
Using the above-mentioned settings, RUN an electrode calibration with 2 or more cycles
At the end of the last cycle, calibration results should be accepted
Ensure that the temperature of the standards does not differ by more than 2°C.

End point titration operation qualification
Fit the titration manager with HCl 0.1 M as titrant and install the titrant.

Preparation of Na₂CO₃
As indicated, dry approximately 5 g of anhydrous sodium carbonate in an oven for 4 hours at 250°C. Let it cool to room temperature in a desiccator with P₂O₅ or another humidity adsorber.

End point titration
To determine the necessary amount of sodium carbonate

With a 25 ml burette capacity
Weigh exactly 85-90 mg of Na₂CO₃
This weight corresponds to 1.6-1.8 meq or 16-18 ml of HCl 0.1M. Use a predose corresponding to 10 ml and a maximum volume of 25 ml

With a 10 ml burette capacity
Use the same settings as the 25 ml burette capacity

With a 5 ml burette capacity
Weigh exactly 40-45 mg of Na₂CO₃
Use a maximum volume of 10 ml
No predose.
Dissolve the weighed sodium carbonate quantitatively in the titration beaker with 50 to 80 ml of freshly distilled water.
Immerse the electrode and the delivery tip in the solution.
Using the above-mentioned settings, run a titration with 3 different samples. Results should be accepted between 99 and 101%.
Inflection Point Titration Manager
Operational Qualification

Introduction

The operational qualification procedure demonstrates that an instrument runs according to the operational specifications in the selected environment. For a titration manager using automatic inflection point determination, this operation can consist of two steps:
- Calibration and checking of a pH measurement electrode system,
- Titration of anhydrous sodium carbonate standard using a commercial standard solution of HCl.

Principle

The reaction has 2 steps corresponding to 2 different inflection points:
\[
\begin{align*}
\text{Na}_2\text{CO}_3 + \text{HCl} & \rightarrow \text{NaHCO}_3 + \text{NaCl} \\
\text{NaHCO}_3 + \text{HCl} & \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{NaCl}
\end{align*}
\]

The operational qualification takes into account the second equivalence point (close to pH 4.00) corresponding to the complete neutralisation of sodium carbonate.

The Titration Manager settings allow the complete titration curve to be seen.

Electrode and reagents

pHC2011-8 Combined pH Electrode (part no. E16M317)
T201 Temperature Sensor (part no. E51M001)
IUPAC Series pH standards
pH 4.005 (part no. S11M002)
pH 7.000 (part no. S11M004)
pH 10.012 (part no. S11M007)
100 g bottle of Merck "certified" sodium carbonate (part no. 1.06394.0100) or 500 g bottle of "pro analysis" Merck sodium carbonate (part no. 1.06392.0500)
1 l of "ready to use" Merck HCl 0.1 mol/l (part no. 1.09060.1000)
Distilled water

Continuous IP titration settings

Electrode
pH: pHC2011-8
Calibration request: YES
Number of cycles: 2
Number of buffers: 3
Measurement: Stirring
Temperature: probe

Calibration parameters
Stability: 15 mpH/min
Acceptation time: 2.00 min
Max. stab. Time: 5.00 min
Acceptation criteria: YES
Iso. pH: 6.65 pH

Calibration solutions
1: 4.005 (IUPAC)
2: 7.000 (IUPAC)
3: 10.012 (IUPAC)
Min. zero pH: 5.8 pH
Max. zero pH: 7.5 pH
Min. sensitivity: 95%
Max. sensitivity: 103%

Titrant
ID: HCl
Unit: M
Titre: Entered
Method

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stirring speed</td>
<td>550 rpm</td>
</tr>
<tr>
<td>Predose</td>
<td>0 ml</td>
</tr>
<tr>
<td>Start timer</td>
<td>45 sec</td>
</tr>
<tr>
<td>Max. volume</td>
<td>(see notes)</td>
</tr>
<tr>
<td>Stop point</td>
<td>2.000 pH</td>
</tr>
<tr>
<td>Smoothing parameter</td>
<td>8</td>
</tr>
<tr>
<td>Number of IP</td>
<td>2</td>
</tr>
<tr>
<td>Min. speed</td>
<td>0.2 ml/min</td>
</tr>
<tr>
<td>Max. speed</td>
<td>5.00 ml/min</td>
</tr>
<tr>
<td>Direction</td>
<td>decreasing pH</td>
</tr>
</tbody>
</table>

Operation qualification in continuous IP

Fit the burette of the titration manager with HCl 0.1 M as titrant and install the titrant.

Preparation of Na₂CO₃

As indicated, dry approximately 5 g of anhydrous sodium carbonate in an oven for 4 hours at 250°C. Let it cool to room temperature in a desiccator with P₂O₅ or another humidity adsorber.

Procedure

Electrode calibration and checking

If the electrode is new, condition it by immersion in distilled water for at least 1 hour.

Connect the pH2011-8 electrode and the T201 Temperature Sensor. Using the above-mentioned settings, RUN an electrode calibration with 2 or more cycles. At the end of the last cycle, calibration results should be accepted. Ensure that the temperature of the standards does not differ by more than 2°C.

Notes

To determine the necessary amount of sodium carbonate:

With a 25 ml burette capacity

Weigh exactly approximately 85-90 mg of Na₂CO₃. This weight corresponds to 1.6-1.8 meq or 16-18 ml of HCl 0.1M. Use a maximum volume close to 20/22 ml.

With a 10 ml burette capacity

Weigh exactly approximately 40 mg of Na₂CO₃. Use a maximum volume of 10 ml.

With a 5 ml burette capacity

Weigh exactly approximately 20 mg of Na₂CO₃. Use a maximum volume of 5 ml.

Dissolve the weighed sodium carbonate quantitatively in the titration beaker with 50 to 80 ml of freshly distilled water. Immerse the electrode and the delivery tip in the solution. Using the above-mentioned settings, run a titration on 3 different tests or replicates. Results should be accepted between 99 and 101%.

Dynamic IP Titration settings

This application note can be used with incremental addition of titrant (Dynamic IP).

- **Dynamic IP**
 - Speed: 5.00 ml/min
 - Dynamic dose: 30
 - Maximum dose: 0.3 ml
 - Stability: 100 mph/min
 - Acceptation: 10 s

These settings were tested with a 10 ml burette. The others settings are unchanged.
Calibration of a Ferrous Solution Fe(II)

Reagent preparation

The most common Fe(II) salt is Mohr’s salt: \((\text{NH}_4)_2\text{Fe(SO}_4\text{)}_2 \cdot 6\text{H}_2\text{O}\) (molecular weight 392.14 g/mol)

To prepare a 0.1 eq/l 1000 ml solution, proceed as follows:

1. Weigh 39.21 g of Mohr’s salt and dissolve in 500 ml of distilled water.
2. Add 100 ml of sulphuric acid approximately 1N.
3. Using a volumetric flask, dilute to 1000 ml with distilled water.

Standard preparation

One of the most common standards in redox analysis is potassium dichromate \(\text{K}_2\text{Cr}_2\text{O}_7\) (molecular weight 294.19 g/mol).

Potassium dichromate solutions are very stable.

The oxidation power of potassium dichromate is based on the reaction:

\[
\text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ + 6 \text{e}^- \rightarrow 2\text{Cr}^{3+} + 7\text{H}_2\text{O}
\]

A 0.1 eq/l potassium dichromate solution contains 1/60 mole of dichromate.

To prepare 1000 ml of 0.1 eq/l \(\text{K}_2\text{Cr}_2\text{O}_7\) proceed as follows:

1. Dry the potassium dichromate (analytical grade) for 2 hours at 120°C and leave it to cool at room temperature in a desiccator.
2. Weigh exactly 4.90317 (294.19/60) g and dissolve with freshly distilled water to exactly 1000 ml using a volumetric flask.

Electrode and reagents

MC3051Pt-9 Metal Electrode, platinum combined (part no. E31M003)

with CL114 cable (part no. A94L114)

50% \(\text{H}_2\text{SO}_4\) in water

Dilute the same volume of concentrated sulphuric acid in a given volume of distilled water. As the operation is very exothermic, make this dilution very slowly according to laboratory safety regulations.

Freshly distilled water

\(\text{K}_2\text{Cr}_2\text{O}_7\) 0.1 eq/l standard solution

End Point titration settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burette volume</td>
<td>25 ml</td>
</tr>
<tr>
<td>Stirring speed</td>
<td>400 rpm</td>
</tr>
<tr>
<td>Working mode</td>
<td>mV with (i = 0)</td>
</tr>
<tr>
<td>Number of end points</td>
<td>1</td>
</tr>
<tr>
<td>End point</td>
<td>690 mV</td>
</tr>
<tr>
<td>Stirring delay</td>
<td>30 seconds</td>
</tr>
<tr>
<td>Minimum speed</td>
<td>0.1 ml/min</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>5.0 ml/min</td>
</tr>
<tr>
<td>Proportional band</td>
<td>350 mV</td>
</tr>
<tr>
<td>End point delay</td>
<td>5 seconds</td>
</tr>
<tr>
<td>Direction</td>
<td>Decreasing mV</td>
</tr>
<tr>
<td>Sample unit</td>
<td>ml</td>
</tr>
<tr>
<td>Standard amount</td>
<td>20</td>
</tr>
<tr>
<td>Standard conc.</td>
<td>0.1 eq/l</td>
</tr>
</tbody>
</table>

Result: eq/l

Procedure

Prepare the titration system with a 25 ml burette and 0.1 eq/l ferrous solution as titrant.

Connect the MC3051Pt-9 electrode to input E1 via cable CL114.

Pipette exactly 20 ml of \(\text{K}_2\text{Cr}_2\text{O}_7\)

0.1 eq/l standard.

Add 10 ml of 50% \(\text{H}_2\text{SO}_4\) solution and complete to 100 ml with distilled water.
Start method by pressing the RUN key.

Results

The result is expressed as eq/l concentration and based on the following formula:

\[
\text{Vol(FeII salt)} \times C(\text{FeII salt}) = \text{Vol(K}_2\text{Cr}_2\text{O}_7) \times C(\text{K}_2\text{Cr}_2\text{O}_7)
\]

The calibration result can be accepted if 5 determinations give a result with a relative standard deviation of less than 0.5%.

Notes

a) Using a solution as standard, it is best to use a standard concentration close to the titrant concentration. This allows closed volumes for titrant and standard. For the best result accuracy, pipette a standard volume corresponding to a delivered titrant volume greater than 50% of the used burette cylinder.

b) The application note uses a 25 ml cylinder capacity. If you use a 5 or 10 ml cylinder for the burette, pipette 5 ml of standard and modify the method as follows:

- **Predose:** 2 ml
- **Maximum volume:** 8 ml

c) It is possible to calibrate the ferrous titrant by weighing an amount of potassium dichromate.

With a 25 ml burette cylinder capacity:

Exactly weigh approximately 95 mg of potassium dichromate.

In the STANDARD screen ENTER:

- **Standard unit:** mg
- **Standard amount:** xx.x
- **Concentration unit:** %
- **Concentration:** 100

(or purity of the standard)

Molecular weight: 294.19

And in the RESULT screen ENTER:

- **Result:** eq/l
- **Coefficients:** 1 Standard + 6 Titrant

Note that for FeSO₄, concentration in eq/l is the same as in mol/l.

Calibration of a Ferrous Solution Fe(II)
Calibration of an Iodine Solution

Reagent preparation

To prepare 0.1 eq/l iodine solution which can be used in a very wide pH range, we can dissolve iodine (I₂) in a solution of potassium iodide. Iodine in redox reaction reacts according to

\[I₂ + 2e^- \rightarrow 2I^- \]

A 0.1 eq/l iodine solution contains 0.05 mol/l or 1/20 mol/l of iodine.

To prepare a 0.1 eq/l iodine solution, dissolve 40 g of potassium iodide in 50 ml of distilled water then add 12.69 g (235.8/20) of analytical grade iodine, wait for it to dissolve completely and complete to 1.000 ml with a volumetric flask.

Store the solution in a brown glass bottle.

Standard preparation

To calibrate iodine solution, use As₂O₃ as standard. It has a molecular weight of 169.87.

The redox reaction between iodine and As(III) is

\[1(As₂O₃) + 2(I₂) + 5H₂O \rightarrow 4I^- + 2AsO₄^{3-} + 10H^+ \]

A 0.1 eq/l As III solution contains 1/40 As₂O₃ mol/l.

To prepare the 0.1 eq/l As III standard solution.

Weigh 4.2467 (169.87/40) g of pure As₂O₃ and dissolve it in about 20 ml of NaOH 10M. You can gently heat the solution to dissolve it faster.

Add about 200 ml of pure water and H₂SO₄ 1M until the pH reaches 8.00.

Leave the solution to reach room temperature.

Complete to exactly 1000 ml with a volumetric flask.

Electrode and reagents

For this reaction, the best titration procedure is a pre-set end point titration using imposed current potentiometry with a double platinum wire electrode.

The curve shape is very sharp around the equivalent point.

M231Pt2 Metal Electrode, double platinum wire (part no. E32M001) with adapter part no. A94P801 (BNC/2xbananna) or M241Pt2-8 with BNC plug (part no. E32M002)

Distilled water

Na₂CO₃ saturated solution in water or pH 10.00 buffer solution (part no. S11M014)

End Point titration settings

Burette volume: 25 ml

Stirring speed: 400 rpm

Working mode: mV with i > 0

Imposed current: 5μA AC or DC

Number of end points: 1

End point: 50 mV

Stirring delay: 60 seconds

Minimum speed: 0.1 ml/min
Calibration of an Iodine Solution

Maximum speed: 6.0 ml/min
Proportional band: 500 mV
End point delay: 10 seconds
Direction: Decreasing mV
Sample unit: ml
Standard amount: 20
Standard conc.: 0.1 eq/l
Result: eq/l

Procedure

Prepare the titration system with a 25 ml burette and 0.1 eq/l iodine as titrant.

Connect the M231Pt2 electrode via the adapter part no. A94P801.

In a beaker, pipette 60 ml of pH 10.00 buffer solution or the same quantity of saturated Na₂CO₃ solution.

Pipette exactly 20 ml of As₂O₃ 0.1 eq/l standard.

Start method by pressing the RUN key.

Results

The result is expressed as eq/l concentration and based on the following formula:

\[\text{Vol(As}_2\text{O}_3) \times C(\text{As}_2\text{O}_3) = \text{Vol(I}_2) \times C(I_2) \]

The calibration result can be accepted if 5 determinations give a result with a relative standard deviation of less than 0.5%.

Notes

a) Using a solution as standard, it is best to use a standard concentration close to the titrant concentration. This allows closed volumes for titrant and standard.

For the best result accuracy, pipette a standard volume corresponding to a delivered titrant volume greater than 50% of the used burette cylinder.

b) The application note uses a 25 ml cylinder capacity. If you use a 5 or 10 ml cylinder for the burette, pipette 5 ml of standard and modify the method as follows:

Predose: 2 ml
Maximum volume: 8 ml

c) If you calibrate an iodine solution using DC or AC imposed current you must use this titrant using the same imposed current procedure.
Calibration of a Thiosulphate Solution

Standard preparation

To prepare a 0.1 eq/l (or 0.1 mol/l) sodium thiosulphate solution, dissolve 24.8181 g of Na$_2$S$_2$O$_3$, 5H$_2$O in 500 ml of freshly distilled water (or freshly boiled and cooled deionised water) and 2 or 3 drops of CHCl$_3$ (or also 0.4 g of NaOH) and complete to 1000 ml using a volumetric flask.

Wait for one day and filter the solution if necessary (precipitation of sulphur can occur). Stock the solution in a brown glass flask.

Look at the solution from time to time and filter again if necessary. Solutions with a concentration below 0.01N (or 0.01M) are not stable.

Na$_2$S$_2$O$_3$, 5H$_2$O has a molecular weight corresponding to 248.181 g/mol.

Standard preparation

To calibrate a thiosulphate solution, use potassium iodate KIO$_3$ as standard. It reacts with potassium iodide KI giving iodine I$_2$ according to the reaction:

\[
\text{IO}_3^- + 5\text{I}^- + 6\text{H}^+ \rightarrow 3\text{I}_2 + 3\text{H}_2\text{O}
\]

The thiosulphate ion reacts with I$_2$ according to the reaction:

\[
3\text{I}_2 + 6\text{S}_2\text{O}_3^- \rightarrow 6\text{I}^- + 3\text{S}_4\text{O}_6^-
\]

The molecular weight of KIO$_3$ is 214.0 g/mol. A 0.1 eq/l iodate solution, according to the above-mentioned reactions (1 ion IO$_3^-$ corresponds to 3I$_2$), **contains 1/60 mol/l of KIO$_3$**.

Weigh exactly 3.5667 g of potassium iodate (214/60) and dilute in 1000 ml of distilled water using a volumetric flask.

Electrode and reagents

For this reaction, the best titration procedure is a pre-set end point titration using imposed current potentiometry with a double platinum wire electrode.

The curve shape is very sharp around the equivalence point.

M231Pt2 Metal Electrode, double platinum wire (part no. E32M001) with adapter part no. A94P801 (BNC - 2xbanana) or M241Pt2-8 Metal Electrode, double platinum wire with BNC plug (part no. E32M002).

Distilled water

KI, solid state

HCl, concentrated

End Point titration settings

Burette volume: 25 ml

Stirring speed: 400 rpm

Working mode: mV (with i>0)

Imposed current: 10 µA (AC or DC)
Calibration of a Thiosulphate Solution

Notes

1) The titration curve shows a characteristic shape with a very flat first part and a sharp second part. To save time, it is therefore advisable to use a predose and a not too high burette speed to avoid “over-titrating”.

2) The application note uses a 25 ml cylinder capacity. If you use a 10 ml cylinder for the burette, pipette 5 ml of standard, with a 5 ml burette pipette, also 5 ml of standard and modify the method as follows:

 Predose: 2 ml
 Maximum volume: 8 ml

3) Instead of an aqueous solution of KIO₃, you can use solid state KIO₃. In this case and for the application note conditions, exactly weigh approximately 60 mg of KIO₃ (for 20 ml of sodium thiosulphate solution) and in the STANDARD screen ENTER

 Standard unit: mg
 Standard amount: xx.x
 Concentration unit: %
 Concentration: 100
 (or purity of the standard)
 Molecular weight: 214

 And in the RESULT screen ENTER

 Result: eq/l
 Coefficients: 1 standard and 6 titrants

Procedure

Prepare the titration system with a 25 ml burette and 0.1 eq/l sodium thiosulphate as titrant.

Connect the M231Pt2 electrode via the adapter or the M241Pt2-8 electrode directly.

Pipette 20 ml of the KIO₃ standard solution, add 30 ml of distilled water, about 1 g of solid KI. Wait for dissolution, then slowly add 5 ml of concentrated HCl.

Dip electrode and delivery tip in the solution.

Start method by pressing the RUN key.

Results

The result is expressed as eq/l concentration and based on the following formula:

\[
\text{Vol}(S₂O₃⁻) \times C(S₂O₃⁻) = \text{Vol}(IO₃⁻) \times C(IO₃⁻)
\]

With \(C(IO₃⁻)\) expressed in eq/l

The calibration result can be accepted if 5 determinations give a result with a relative standard deviation below 0.5%.

Predose: 15 ml (see note)

Number of end points: 1

End point: 200 mV

Stirring delay: 60 seconds

Minimum speed: 0.1 ml/min

Maximum speed: 2.5 ml/min

Proportional band: 200 mV

End point delay: 5 seconds

Sample unit: ml

Standard amount: 20

Standard conc.: 0.1 eq/l

Result: eq/l

Titration: Increasing mV
Chemical Oxygen Demand of Water

Introduction

Chemical Oxygen Demand (COD) is an important parameter for wastewater or surface water testing and plants. This determination gives information about the degree of water pollution by organic material. This application note concerns COD determination by potassium dichromate. Another method using potassium permanganate is used for low COD determinations.

Principle

Organic matter contained in a water sample is oxidised in 50% sulphuric acid, by a known excess of potassium dichromate. After digestion, remaining unreduced dichromate is determined by potentiometric titration using a Fe(II) solution according to the following reaction:

\[\text{Cr}_2\text{O}_7^{2-} + 2\text{Fe}^{2+} + 14\text{H}^+ \rightarrow 2\text{Cr}^{3+} + 6\text{Fe}^{3+} + 7\text{H}_2\text{O} \]

A blank titration with distilled water as sample is run for every cycle. The result is expressed as oxygen equivalent.

Electrode and reagents

For titration in a beaker
M231Pt Metal Electrode, platinum (part no. E31M002) with CL114 cable (part no. A94L114)
REF601 Reference Electrode, mercurous sulphate (part no. E21M012)
For titration directly in digestion flask
MC602Pt Metal Electrode, combined platinum/mercurous sulphate (part no. 945-360)
Titrant (NH_4)_2Fe(SO_4)_2·6H_2O (Mohr’s salt) 0.15 eq/l (MW = 392.14 g/mol)
Weigh and dissolve 58.82 g of Mohr’s salt in 500 ml of distilled water
Add 100 ml of sulphuric acid approximately 1N
Using a volumetric flask, dilute to 1000 ml with distilled water
Calibrate as indicated in separate application note

Potassium dichromate 0.25 eq/l solution or 0.0417M (K_2Cr_2O_7)
(A 0.1 eq/l K_2Cr_2O_7 solution contains 1/60 mole of K_2Cr_2O_7, that has a molecular weight of 294.19 g/mol)
Dry the potassium dichromate (analytical grade) for 2 hours at 120°C and let it cool to room temperature
Weigh exactly 12.258 g and dissolve exactly with freshly distilled water to 1000 ml using a volumetric flask
Sulphuric acid reagent
Add 5.5 g of Ag_2SO_4 to 1 kg of concentrated H_2SO_4 and leave to stand for 2 days to dissolve the Ag_2SO_4
Solid mercuric sulphate HgSO_4

End Point titration settings

Back titration with blank
Burette volume: 25 ml
Stirring speed: 400 rpm
Working mode: mV (with i=0)
Back titration: Manual
Number of end points: 1
End point: 300 mV
Stirring delay: 30 seconds
Chemical Oxygen Demand in Water

Minimum speed: 0.1 ml/min
Maximum speed: 2.5 ml/min
Proportional band: 350 mV
End point delay: 5 seconds
Sample unit: ml
Sample amount: 20
Blank volume: determined by blank titration
Excess: 0.0 ml
Titrant: Decreasing potential

Procedure

Blank preparation and titration
Using distilled water as sample, prepare and titrate a blank with the same procedure and reagents (see below)
Accept the obtained titrant volume as blank volume
The theoretical blank volume can be calculated according to the following formula:
Vol. of blank = 10 × 0.25 / 0.15 = 16.67 ml
10 = volume of K₂Cr₂O₇ solution in ml
0.25 = Concentration of K₂Cr₂O₇ in eq/l
0.15 = concentration of Mohr’s salt solution in eq/l

Sample preparation
Place 20 ml of water in a 250 ml refluxing flask or in a special COD tube. Add 0.4 g of HgSO₄ and glass beads and very slowly 2 ml of sulphuric reagent while mixing. Then add 10.00 ml of dichromate solution and 28 ml of sulphuric acid reagent and connect to condenser. Mix thoroughly and boil under reflux during 2 hours.
After rinsing condenser with 5/10 ml of distilled water, transfer to titration beaker using 25/30 ml of distilled water to rinse. Total volume does not exceed 100 ml.

Sample titration
Prepare the titration manager with 25 ml burette and 0.15 eq/l ferrous solution as titrant.
Connect M231Pt electrode via the CL114 cable and the REF601 reference electrode or, if necessary, the MC602Pt combined electrode.
Dip electrodes and delivery tip in the sample beaker.
Start method by pressing the RUN key.

Results
Expressed as mg/l of oxygen equivalent according to:
COD (in mg/l of oxygen) = (Vbl - Vtit) * C * 8 * 1000 / Vsample
Vbl = titrant volume consumed during blank titration (close to 16.67 ml for application note conditions)
Vtit = titrant volume consumed during sample titration
(Vbl - Vtit) = directly calculated by TIM8xx
C = titrant concentration in mol/l or equivalent/l
8 = equivalent weight for oxygen (16/2)
Vsample = sample volume in ml

For a result in mg/l of oxygen
Enter
The sample amount in the SAMPLE screen
The titrant concentration in the TITRANT screen
1 Titrant and 1 Sample in the COEFFICIENTS display
8 as equivalent weight for oxygen

The Titration Manager gives a result according to the above formula, as (Vbl - Vtit) is directly calculated by the Titration Manager.

For 5 determinations
Mean: 450 mg/l oxygen
Standard deviation: 15 mg/l
Rel. standard deviation: 3%

Working range
With application note conditions, titrant concentration of 0.15 eq/l and sample volume of 20 ml
(Vbl - Vtit) = 1 ml corresponds to a COD of 60 mg/l
(Vbl - Vtit) = 15 ml corresponds to a COD of 900 mg/l

Notes
The Titration Manager uses the same electrodes for titration and reagent calibration. For titrant calibration with the electrodes in this note, you can use the application note TTEP01.03MIN with a change in the end point potential.
The latest standard NF T 90.101(2001) uses the same procedure but uses as reagents
(NH₄)₂Fe(SO₄)₂·6H₂O (Mohr’s salt) 0.12 mol/l
Potassium dichromate solution or 0.040 mol/l (K₂Cr₂O₇)
And works with 10 ml of sample

Bibliography
EPA method number 410.1
Standard methods for water and wastewater 18th edition (1992) 5-6 part 5220
ISO 6060 (1989)
NFT90-101 (2001)
Analysis of a Chromic Passivation Bath

Introduction
In the car industry, the analysis of a chromic passivation bath consists of a determination of the concentration of dichromate ion by redox titration with ferrous sulphate as titration reagent. The result is expressed as "points", i.e. the number of millilitres of 0.1 eq/l titrant used for a given amount of sample, generally 50 or 100 ml.

Principle
The titration reaction occurs according to the following reaction

\[6\text{Fe}^{2+} + \text{Cr}_2\text{O}_7^{2-} + 14\text{H}^+ \rightarrow 6\text{Fe}^{3+} + 2\text{Cr}^{3+} + 7\text{H}_2\text{O} \]

This reaction takes place in strong acidic media.

Electrode and reagents
MC3051Pt-9 Metal Electrode, combined, platinum (part no. E31M003) with CL114 cable (part no. A94L114)

Ferrous sulphate solution 0.1 eq/l
Weigh and dissolve 39.21 g of \((\text{NH}_4)_2\text{Fe}({\text{SO}_4})_2 \cdot 6\text{H}_2\text{O}\) (Mohr's salt) in 500 ml of distilled water. Add 100 ml of sulphuric acid approximately 1N. Using a volumetric flask, dilute to 1000 ml with distilled water.

50% \(\text{H}_2\text{SO}_4\) in water
Dilute the same volume of concentrated sulphuric acid in a given volume of distilled water. As this operation is very exothermic, run the dilution very slowly according to laboratory safety regulations.

End Point titration settings

- Burette volume: 25 ml
- Stirring speed: 400 rpm
- Working mode: mV
- Number of end points: 1
- End point: 690 mV
- Stirring delay: 30 seconds
- Minimum speed: 0.1 ml/min
- Maximum speed: 2.5 ml/min
- Proportional band: 250 mV
- End point delay: 5 seconds

Sample unit: ml
Sample amount: 100
Result: ml
Titration: Decreasing mV

Procedure
Prepare the Titration Manager with a 25 ml burette and 0.1 eq/l ferrous solution as titrant.
Connect the electrode to the input by means of the CL114 cable.
Pipette the required amount of sample (generally 100 ml).

Add 25 ml of 50% \(\text{H}_2\text{SO}_4\) solution for 100 ml of sample.
Dip electrode and delivery tip in the solution.
Start method by pressing the RUN key.

Results
Expressed as ml of 0.1 eq/l titrant for 100 ml of sample

\[R = V(\text{titr}) \]
Analysis of a Chromic Passivation Bath

If the titrant used is not exactly 0.1 eq/l in concentration and if the sample amount is not 100 ml, correct as follows:

\[
R = \frac{V(titr) \times 100 \times C(titr)}{V(smp) \times 0.1}
\]

- \(V(titr)\) = total volume of titrant to reach the end point in ml
- \(V(smp)\) = current sample amount
- \(C(titr)\) = exact concentration of the titrant

5 determination results in points or ml of titrant

<table>
<thead>
<tr>
<th>Mean</th>
<th>8.50 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard deviation</td>
<td>0.076 ml</td>
</tr>
<tr>
<td>Rel. standard deviation</td>
<td>0.9%</td>
</tr>
</tbody>
</table>

Working range

As the result for a 100 ml sample volume and a 0.1 eq/l titrant is directly the delivered volume of titrant, the working range for the best possible accuracy and reproducibility is between 8.75 and 25 ml for the application note conditions.

Notes

1) Remember that strong acidic media are necessary for this redox titration (see the reaction formula)

2) 50% sulphuric acid can be replaced by 50% phosphoric acid

3) The 30-second stirring delay is necessary to allow the platinum electrode to reach a stable potential

4) If the titrant used is not 0.1 eq/l, you need to multiply the result obtained by a factor, \(F\) determined as follows:

\[
F = \frac{\text{current titre (expressed in eq/l)}}{0.1}
\]
Free Sulphur Dioxide in Wine
(Modified Ripper method)

Introduction

Sulphur dioxide is present in wines as free SO₂ and also bound to acetaldehyde. The sum gives "total" sulphur dioxide. Bound SO₂ is released by addition of NaOH 1M to the wine sample.

This application is dedicated to free SO₂ measurement.

As a rule, determination of SO₂ in wines by the modified Ripper method uses a coloured indicator to determine the equivalence point, but it is also possible to use a pre-set end point titration with imposed current potentiometry.

With this end point method, many chemical functions present in the wine can modify the electrode behaviour and the reaction kinetics.

This application note gives a modified procedure suitable for many wines (white, red or rosé). We have tested various different wines but not all those available worldwide. This method has not been tested on special types of wine such as sparkling or sweet wines.

Principle

SO₂ is determined by titration with iodine solution according to the reaction

\[\text{HSO}_3^- + I_2 + H_2O \rightarrow \text{SO}_4^{2-} + 2I^- + 3H^+ \]

Free SO₂ is measured directly in acidic media.

The titration is run according to a pre-set end point titration with imposed current potentiometry and a double platinum wire electrode.

Results are expressed as SO₂ in mg/l.

Electrode and reagents

M231Pt2 Metal Electrode, double platinum wire (part no. E32M001) with adapter part no. A94P801 or M241Pt2-8 Metal Electrode without adapter (part no. E32M002)

Iodine solution 0.01 mol/l (0.02 eq/l)
25% v/v H₂SO₄ solution in distilled water

Dilute 250 ml of concentrated sulphuric acid in 750 ml of distilled water. This operation is highly exothermic so perform the dilution very slowly and respect laboratory safety regulations. Let the solution cool down to room temperature.

Kl 5%

Dilute 50 g of potassium iodide in 1000 ml of distilled water.

NaHCO₃ solid form (see notes and remarks)

End Point titration settings

Burette volume: 10 ml
Stirring speed: 400 rpm
Working mode: mV with i = 1 µA (DC)
Number of end points: 1
End point: 100 mV
Stirring delay: 10 seconds
Minimum speed: 0.2 ml/min
Maximum speed: 5.0 ml/min
Proportional band: 500 mV
End point delay: 5 seconds
Sample unit: ml
Sample amount: 50 ml for free SO₂
Titration: Decreasing potential
Result: mg/l
Procedure

Free SO₂

Pipette 5 ml of H₂SO₄ solution 25% v/v into a low diameter beaker, add 10 ml of KI solution 5% and 50 ml of wine, and titrate quickly with 0.01M Iodine solution. Addition of NaHCO₃ indicated in some local procedures can be avoided if titration occurs quickly.

Results

Expressed as mg/l of SO₂ (MW of 64 g/mol)

Using as titrant unit: mol/l (M)

In this case, as 1 mole of titrant reacts with 1 mole of SO₂ (or HSO₃⁻) in the sample:

\[R = \frac{V(\text{titr}) \times C(\text{titr}) \times 64 \times 1000}{V(\text{smpl})} \]

- \(V(\text{titr}) \) = Total volume of titrant to reach the end point (in ml)
- \(C(\text{titr}) \) = Concentration of titrant in mol/l
- 64 = Molecular weight of SO₂ in g/mol
- \(V(\text{smpl}) \) = sample volume in ml

For a result in mg/l with the Titration Manager

Enter

The actual sample amount in the SAMPLE screen

The titrant concentration in the TITRANT screen (in eq/l)

2 Titrants and 1 Sample in the COEFFICIENTS display

64 as molecular weight

The Titration Manager gives a result according to the above formula.

Statistics

For 5 determinations with a white wine

Free SO₂

Mean: 35 mg/l SO₂

Standard deviation: 0.7 mg/l SO₂

Rel. standard deviation: 2%

Procedure for red and rosé wines

With red wines, a secondary slow reactions between the iodine and tannin and other products can occur. Although addition of KI is not always necessary with white wines, it is **compulsory for red and rosé wines**. Addition of KI (potassium iodide) eliminates or reduces secondary slow reactions between iodine and reducing products present in red wine

Titrate immediately using the titration settings above

Results for free SO₂ in red or rosé wines

(4 tests on each kind of wine)

Grenache (red wine)

Mean: 23.1 mg/l

Stand dev.: 0.7 mg/l

Result (1): 21.7 mg/l

Merlot (red wine)

Mean: 15.2 mg/l

Stand dev.: 0.5 mg/l

Result (1): 16.0 mg/l

Syrah (red wine)

Mean: 16.9 mg/l

Stand dev.: 0.4 mg/l

Result (1): 15.6 mg/l

(Results verified free SO₂ determination measured by aspiration method)

(1) (Result for aspiration method)

Rosé wine

(3 determinations)

Mean: 20.3 mg/l

Stand dev.: 0.2 mg/l

Verification of the free SO₂ content by addition of Na₂SO₃ aqueous solution before titration

(The solution S₁ contains 12.0 g/l of Na₂SO₃ or 6.2 mg/ml of SO₂)

50 ml Rosé wine 20.3 mg/l

50 ml Rosé wine + 0.2 ml of S₁ 42.0 mg/l

Theoretical 20 + 24 = 44 mg/l

50 ml of red wine 1 24.4 mg/l

50 ml of red wine 1 + 1 ml S₁ 126 mg/l

Theoretical 24.4 + 120 = 144 mg/l

50 ml of red wine 2 29.7 mg/l

50 ml of red wine 2 + 0.1 ml of S₁ 41 mg/l

Theoretical 29.7 + 12 = 42 mg/l

50 ml of red wine 2 + 0.2 ml of S₁ 51 mg/l

Theoretical 29.7 + 24 = 54 mg/l
Free Sulphur Dioxide in Wine (Modified Ripper method)

Note that the recovery of added SO$_2$ is not 100% because the wine immediately binds part of this "SO$_2$".

Working range

For free SO$_2$ determination, using a 0.01 mol/l titrant and 50 ml for sample volume, 1 ml of titrant corresponds to 12.8 mg/l SO$_2$

Automation of the free SO$_2$ determination

Using a sample changer (SAC80 15 position), it is not recommended to add H$_2$SO$_4$ and KI for too long before the titration. The KI/H$_2$SO$_4$ mixture is not stable as in these conditions I- is oxidised giving I$_2$.

Add the KI solution manually to the different beakers and use a peristaltic pump for H$_2$SO$_4$ addition.

Tests were run using a Watson-Marlow Alitea 400 (040.1501.D1E) peristaltic pump fitted with silicone tubing (ext. diameter 7 mm int. diameter 4 mm). With this tubing and a speed setting of 6, it takes 12 seconds to deliver 10 ml (typical value).

Fit the silicone tubing in the head of the pump.

Dip one end of the tubing in the H$_2$SO$_4$ solution bottle and fit the other with a glass delivery tip for example.

Set the pump (potentiometer in 6 position and in CW or clockwise)

Connect the pump to the mains and let it run until the air bubbles in the tubing are eliminated

Disconnect the pump.

Connect the pump to the 5 V TTL output

Black plug of the Titration Manager to pin 8 of the external command plug

Red plug of the Titration Manager to pin 4 of the external command plug

Set the pump

Potentiometer in position 6 and in CW (clockwise) position

Connect the pump to the mains

The pump does not start as it is controlled by the titration manager.

Titration Manager settings

Use the above settings

Just add method parameters

Auxiliary output: 5 V

Aux. On for: 12 seconds

Note that use of twin head peristaltic pump allows simultaneous automatic addition of the two solutions at (H$_2$SO$_4$ 25% and KI 5%) the beginning of the titration.

Tests

This method, named Ripper’s method, is less accurate than the aspiration method because part of the iodine can be consumed by reducing substances other than SO$_2$.

Using the aspiration method, SO$_2$ is removed from the sample by a stream of air through the acidified sample and oxidised in H$_2$SO$_4$. Then H$_2$SO$_4$ is titrated by NaOH.

In some cases, the modified Ripper method can give higher results than expected with wines containing a significant amount of ascorbic acid because this acid (and some others) reacts quantitatively with iodine.

Adding NaHCO$_3$ forms a CO$_2$ blanket over the sample, which prevents oxygen interference during the titration. Addition should be avoided if the titration is run quickly in a covered beaker.

As it is easy to lose SO$_2$ during the preparation of the sample, make sure you titrate the sample immediately after preparation.

Imposed current values of 1 µA and 5 µA (DC) were tested without change in the results.

Titrant concentrations corresponding to 0.01M and 0.05M were also tested without change in the titration speed reaction and in the results.

Notes

In some cases, the modified Ripper method can give higher results than expected with wines containing a significant amount of ascorbic acid because this acid (and some others) reacts quantitatively with iodine.

Adding NaHCO$_3$ forms a CO$_2$ blanket over the sample, which prevents oxygen interference during the titration. Addition should be avoided if the titration is run quickly in a covered beaker.

As it is easy to lose SO$_2$ during the preparation of the sample, make sure you titrate the sample immediately after preparation.

Imposed current values of 1 µA and 5 µA (DC) were tested without change in the results.

Titrant concentrations corresponding to 0.01M and 0.05M were also tested without change in the titration speed reaction and in the results.

Bibliography

Techniques for chemical analysis and quality monitoring during wine making

Published by Patrick ILAND wines promotion Campbelltown

AUSTRALIA
ClO⁻ Determination in Bleach

Direct Titration with NaAsO₂

Introduction

A bleach solution contains mainly NaClO plus basic products such as NaOH and Na₂CO₃. ClO⁻ can be determined directly by redox titration. The titration result is generally expressed as a % of ClO⁻.

Principle

Direct titration of ClO⁻ by NaAsO₂ uses the following redox reaction:

\[
\text{AsO}_2^- + \text{ClO}^- + 2\text{OH}^- \rightarrow \text{AsO}_4^{3-} + \text{Cl}^- + \text{H}_2\text{O}
\]

Note that in this reaction, which involves 1 mole ClO⁻ for 1 mole AsO₂⁻, 2 oxidation numbers are exchanged (As (III) to As (V) and Cl(1) to Cl(-1)).

This reaction needs a pH of around pH 10.00

The titration is run according to a potentiometric pre-set end point titration using a combined platinum/reference electrode.

Electrode and reagents

- **MC3051Pt-9 Metal Electrode**, combined platinum (part no. E31M003) with CL114 cable (part no. A94L114)
- **Distilled water**
- **pH 10.00 Buffer Solution** (part no. S11M014)
- **NaAsO₂ 0.1 eq/l solution in water**

To prepare the 0.1 eq/l (or 0.05 mol/l) NaAsO₂ solution:

As a 0.1 eq/l NaAsO₂ solution contains 1/40 As₂O₃ mol/l

Weigh 4.2467 (169.87/40) g of pure As₂O₃ and dissolve it in about 20 ml of 10M NaOH. You can gently heat the solution to have a quick dissolution.

Add about 200 ml of pure water and 1M H₂SO₄ until the pH reaches 8.00

Leave the solution to reach room temperature

Dilute to 1000 ml exactly with a volumetric flask

End Point titration settings

- **Burette volume**: 25 ml
- **Stirring speed**: 400 rpm
- **Working mode**: mV
- **Number of end points**: 1
- **End point**: 200 mV
- **Stirring delay**: 30 seconds
- **Minimum speed**: 0.1 ml/min
- **Maximum speed**: 10 ml/min
- **Proportional band**: 375 mV
- **End point delay**: 5 seconds
- **Sample unit**: ml
- **Sample amount**: 0.5
- **Titrant**: Decreasing potential
- **Result**: g/l

Procedure

Install the titration system with the NaAsO₂ solution

Connect the electrode

Pipette (or preferably weigh) the sample amount

Dilute the sample with 50 ml of pH 10.00 buffer solution

Dip electrode and delivery tip in the solution

Start method by pressing the RUN key
Results

Commonly expressed as g/l of ClO\(^-\) (MW = 51.43 g/mol)

Use as titrant unit: mol/l (M)

As 1 mole of titrant reacts with 1 mole of ClO\(^-\) in sample:

\[R = \frac{V(titr) \times C(titr) \times 51.43}{V(smp)} \]

- **V(titr)** = total volume of titrant to reach the end point (in ml)
- **C(titr)** = concentration of titrant in mol/l
- **51.43** = molecular weight of ClO\(^-\)
- **V(smp)** = sample volume in ml

For a result in g/l

Enter
The sample amount in the SAMPLE screen
The titrant concentration in the TITRANT screen (in mol/l)
1 Titrant and 1 Sample in the COEFFICIENTS display
51.43 as molecular weight

The Titration Manager gives a result according the above formula.

Using eq/l as titrant unit

Enter
The sample amount in the SAMPLE screen
The titrant concentration in the TITRANT screen (in mol/l)
2 Titrants and 2 Samples in the COEFFICIENTS display
51.43 as molecular weight

The Titration Manager gives a result in g/l according the above formula.

For a result as a %

As the Titration Manager cannot give a result in % if the sample unit is a volumetric unit, you can use the equation feature:

Equation number: 1
Equation result: % ClO
Equation formula:

\[R1 \times 10 \]

R1 is the titration result calculated in g/l

5 determinations on a commercial concentrated bleach

Mean (as ClO\(^-\)):

\[76.5 \text{ g/l} \]
Standard deviation:

\[1.2 \text{ g/l} \]
Rel. standard deviation:

\[1.6\% \]

Working range

As a commercially available concentrated bleach corresponds to a ClO\(^-\) concentration in g/l of around 80 (corresponding to a total volume of titrant of around 16 ml for 0.5 ml of sample), it is possible to use the dilution procedure to facilitate pipetting or weighing 0.5 ml of sample.

For example, pipette 5 ml of sample, dilute to 100 ml with water and take an aliquot of 10 ml.

In the SAMPLE display enter

DILUTION: YES
Sample: 5 ml
Final dilution volume: 100 ml
Aliquot: 10 ml
ClO⁻ Determination in Bleach
Indirect Titration

Introduction

A bleach solution contains mainly NaClO plus basic products such as NaOH and Na₂CO₃. ClO⁻ can be determined by redox titration. Besides the direct titration by sodium arsenite; ClO⁻ determination can be run with a two-step titration; quantitative oxidation of I⁻ by ClO⁻ giving I₂ and titration of I₂ by sodium thiosulphate. The titration result is generally expressed as % of ClO⁻.

Principle

Oxidation of I⁻ by ClO⁻ follows the reaction
ClO⁻ + 2I⁻ + H₂O → I₂ + Cl⁻ + 2OH⁻

Titration of I₂ by sodium thiosulphate follows the reaction
I₂ + 2 S₂O₃²⁻ → S₄O₆²⁻ + 2I⁻

The result of these 2 equations is 1 ion ClO⁻ corresponds to 2 ions S₂O₃²⁻.

End Point titration settings

Burette volume: 25 ml
Stirring speed: 400 rpm
Working mode: mV with i = 10 µA (DC)
Number of end points: 1
End point: 200 mV
Stirring delay: 40 seconds
Minimum speed: 0.1 ml/min
Maximum speed: 5.0 ml/min
Proportional band: 200 mV
End point delay: 5 seconds
Sample unit: ml
Sample amount: 0.5
Titrations: Increasing potential
Result: g/l

Procedure

Install the titration system with the Na₂S₂O₃ solution
Connect the electrode
Pipette (or preferably weigh) the sample amount
Dilute the sample with 50 ml of distilled water
Add 1 g of KI and 5 ml of HCl
Dip electrode and delivery tip in the solution
Start method by pressing the RUN key

Results

Commonly expressed as g/l of ClO\(^-\) (MW = 51.43 g/mol)

Use as titrant unit: mol/l (M)

As 2 moles of titrant corresponds to 1 mole of ClO\(^-\) in sample:

\[R = \frac{V(\text{titr}) \times C(\text{titr}) \times 51.43}{2} \div V(\text{smp}) \]

\(V(\text{titr}) \) = total volume of titrant to reach the end point (in ml)

\(C(\text{titr}) \) = concentration of titrant in mol/l

51.43 = molecular weight of ClO\(^-\)

\(V(\text{smp}) \) = sample volume in ml

For a result in g/l

Enter

The sample amount in the SAMPLE screen

The titrant concentration in the TITRANT screen (in mol/l)

2 Titrants and 1 Sample in the COEFFICIENTS display

51.43 as molecular weight

The Titration Manager gives a result according the above formula.

For a result as a %

As the Titration Manager cannot give a result in % if the sample unit is a volumetric unit, you can use the equation feature

Equation number: 1

Equation result: % ClO

Equation formula:

\[\frac{R1}{10} \]

R1 is the titration result calculated in g/l

5 determinations on a commercial concentrated bleach

Mean (as ClO\(^-\)): 78.8 g/l

Standard deviation: 1.2 g/l

Rel. standard deviation: 1.6 %

Working range

As a commercially available concentrated bleach corresponds to a ClO\(^-\) concentration in of around 80 g/l (corresponding to a total volume of titrant of around 16 ml for 0.5 ml of sample), it is possible to use the dilution procedure to facilitate pipetting or weighing 0.5 ml of sample.

For example, pipette 5 ml of sample, dilute to 100 ml with water and take an aliquot of 10 ml.

In the SAMPLE display enter

DILUTION: YES

Sample: 5 ml

Final dilution volume: 100 ml

Aliquot: 10 ml
Bromine Number of Petroleum Products
(ASTM D1159-98 Electrometric titration)

Introduction

This method covers bromine number determination of certain petroleum products indicated in ASTM standard D1159-98. The magnitude of the bromine number is simply an indication of the bromine reactive constituents, not an indication of the constituents. The bromine number mainly indicates the concentration of double bonds present in the product.

Principle

Expressed as g of Bromine (Br₂) able to react with 100 g of product, the bromine number determination uses the reaction between a (Br⁻/BrO₃⁻) solution and the petroleum product according to the following reactions

\[5 \text{Br}^- + \text{BrO}_3^- + 6\text{H}^+ \rightarrow 3\text{Br}_2 + 3\text{H}_2\text{O} \]

\[\text{Br}_2 + \text{R}-\text{C} = \text{C}-\text{R} \rightarrow \text{R}-\text{C}-\text{C}-\text{R} \]

(\text{Br}-\text{Br})

(main reaction with product)

(\text{Note that other reactions can occur such as addition, substitution or oxidation})

To avoid secondary reactions the titration is run at low temperature (close to 5°C). The titrant concentration, expressed as Br₂ concentration, is 0.25 mol/l (or ¼ mol/l). According to reaction (a), the titrant contains 5/12 mole of KBr and 1/12 mol/l of KBrO₃. The molar weight of KBr is 119.9 g/mol and for KBrO₃ 167.9 g/mol. Titration is run according to an inflection determination with imposed current potentiometry and a double platinum wire electrode.

Electrode and reagents

M241Pt2-8 Metal Electrode, double platinum (part no. E32M002) or M231Pt2 Metal Electrode, double platinum (part no. E32M001) with adapter part no. A94P801

T201 Temperature sensor (part no. E51M001)

Water-jacketed titration beaker connected to a low temperature thermostat or a bath filled with ice

Dichloromethane (CH₂Cl₂)

Warning: Reagents used in this application note are flammable. They can cause severe burns and are hazardous if swallowed, breathed or come into contact with the skin or eyes. Always respect laboratory health and safety regulations when using these reagents.

Electrode and reagents

M241Pt2-8 Metal Electrode, double platinum (part no. E32M002) or M231Pt2 Metal Electrode, double platinum (part no. E32M001) with adapter part no. A94P801

Dichloromethane (CH₂Cl₂)

Warning: Reagents used in this application note are flammable. They can cause severe burns and are hazardous if swallowed, breathed or come into contact with the skin or eyes. Always respect laboratory health and safety regulations when using these reagents.
Inflection Detection settings

<table>
<thead>
<tr>
<th>CONTINUOUS IP</th>
<th>Titration with blank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burette volume:</td>
<td>10 ml (see notes)</td>
</tr>
<tr>
<td>Max. volume:</td>
<td>7 ml</td>
</tr>
<tr>
<td>Stirring speed:</td>
<td>500 rpm</td>
</tr>
<tr>
<td>Working mode:</td>
<td>mV with i > 0</td>
</tr>
<tr>
<td>Current:</td>
<td>DC</td>
</tr>
<tr>
<td>Current value:</td>
<td>5µA (see notes)</td>
</tr>
<tr>
<td>Blank:</td>
<td>YES</td>
</tr>
<tr>
<td>Start timer:</td>
<td>30 s</td>
</tr>
<tr>
<td>Stop point:</td>
<td>0 mV</td>
</tr>
<tr>
<td>Minimum speed:</td>
<td>0.50 ml/min</td>
</tr>
<tr>
<td>Maximum speed:</td>
<td>2.00 ml/min</td>
</tr>
<tr>
<td>Smoothing param:</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Titrations</th>
<th>Increasing potential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inflection number:</td>
<td>1</td>
</tr>
<tr>
<td>Stop at last IP:</td>
<td>YES</td>
</tr>
</tbody>
</table>

Procedure

Connect the double platinum wire electrode to the corresponding input of the Titration Manager.

Connect the temperature sensor to the corresponding input on the Titration Manager.

For a new titration solvent batch run a BLANK titration with 115 ml of titration solvent and 5 ml of dichloromethane. The experimental blank volume is generally lower than 0.1 ml.

Sample preparation

Place 10 ml of dichloromethane in a 50 ml volumetric flask then add the weighed sample and fill the flask to the mark with dichloromethane.

Add 110 ml of titration solvent to the titration beaker.

Add an aliquot (generally 5 ml but not more than 10 ml) of the sample solution in dichloromethane.

Dip the electrode, temperature sensor and delivery tip in the beaker and immerse the beaker in an ice bath or alternatively in a low temperature thermostatic bath.

Using the electrode direct measurement function of the Titration Manager (icon ELECTRODES and "DISPLAY MEASUREMENT") allow the solution to reach the mentioned temperature (around 5°C) (see notes).

Run the titration.

Results

As indicated above, results are expressed in g of Br₂ able to react with 100 g of product.

\[
R(\text{bromine number}) = \frac{(V_{\text{titr}} - V_{\text{blk}}) \times C(\text{titr}) \times 159.8 \times 100 \times W(\text{smp})}{1000}
\]

Vtitr = Total volume of titrant used in ml

Vblk = Blank volume used for solvent titration

C(titr) = Concentration of titrant in mol/l

W(smp) = Sample weight in g

159.8 = molecular weight of Br₂

100 = conversion factor for 100 g of product

1000 = correction factor for result in g instead of mg

For 5 determinations on cyclohexene (C₆H₁₀)

Mean delivered volume: 3.42 ml

Rel. standard deviation: 1.2%

Corresp. Bromine number: 193

Theoretical: 194.6

Working range

For a sample amount of 1g, and a calculated dilution coefficient of 10 (50 ml for final dilution volume and 5 ml for the aliquot), 1 ml of 0.25 mol/l titrant corresponds to a Bromine number of 37.5.

The magnitude of the bromine number of a sample is often unknown and it is necessary to perform a preliminary test with 2 g of sample.

ASTM Standard D1159 gives a table for sample amount as a function of Bromine number:

<table>
<thead>
<tr>
<th>Bromine number</th>
<th>Sample amount in g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>20-16</td>
</tr>
<tr>
<td>10-20</td>
<td>10-8</td>
</tr>
<tr>
<td>20-50</td>
<td>5-4</td>
</tr>
<tr>
<td>50-100</td>
<td>2-1.5</td>
</tr>
<tr>
<td>100-150</td>
<td>1.5-0.8</td>
</tr>
<tr>
<td>150-200</td>
<td>0.8-0.6</td>
</tr>
</tbody>
</table>
Notes

Notes regarding the titration solvent
ASTM Standard D1159 gives trichloroethane as an alternative for dichloromethane. However, the use of this solvent is forbidden in many countries. To save time, you can store the titration solvent in a refrigerator between the experiments.

Note regarding the maximum volume
To avoid a two-phase system during titration, it is not recommended to use a titrant volume higher than 10 ml.

Note regarding the imposed current
A 1 µA imposed current can give noisy curves and 10 µA gives a curve that is not well defined around the inflection point. Instead of DC imposed current it is possible to use AC imposed current. A 25 µA AC imposed current gives titration curves similar to those obtained with 5 µA DC current. In this case, also modify the "Br-Nb-Ctrl-Temp" method.

Note regarding the equation
The entered equation takes into account the programmed dilution of the sample. DA is the final dilution volume and AL the aliquot volume.

Note regarding sample handling
For sample and dichloromethane handling, you can use a glass syringe instead of a pipette.

Note regarding temperature measurement
As indicated previously, you can use the DISPLAY MEASUREMENT function, but in this case you can just check the temperature of the solution (DISPLAY MEASUREMENT checks the measured potential on E1 and E2 inputs, not on Pt-Pt input). You can use this information in the pre-programmed method "Br-Nb-Ctrl-Temp" that measures the potential of the double platinum wire electrode AND the sample temperature.

Note regarding the curve shape
Based on experience, the starting potential may be around 1300 mV and suddenly falls to around 800 mV at the beginning of the titration. Then the curve falls very quickly to the final measured potential (generally around 100 mV) near the inflection point.

Curve

<table>
<thead>
<tr>
<th>mV</th>
<th>ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.8</td>
</tr>
<tr>
<td>700</td>
<td>1.6</td>
</tr>
<tr>
<td>400</td>
<td>2.4</td>
</tr>
<tr>
<td>300</td>
<td>3.2</td>
</tr>
</tbody>
</table>

Curve for Bromine Number of Petroleum Products (ASTM D1159-98 Electrometric titration)
Iodometric Titration of Vitamin C
(pre-set end point and inflection detection methods)

Introduction
Vitamin C (ascorbic acid or its sodium salt) is naturally present in fresh fruit juices or vegetables. It is also used in some pharmaceutical products. The food industry makes use of vitamin C as an anti-oxidation additive in cooked pork meats or canned products to avoid oxygen action (E300 for ascorbic acid or E301 for the sodium salt according to European regulations).

Summary
Many redox titrations can be used for Vitamin C determination. In some cases, depending on the media, iodometric back titration is possible, for example in fresh lemon juice or preservatives for food products.

Electrode and reagents

Electrode for pre-set end point titration
M241Pt2-8 Metal electrode, double platinum (part no. E32M002) or M231Pt2 Metal electrode, double platinum (part no. E32M001) with adapter part no. A94P801

Electrode for inflection detection
MC3051Pt-9 Metal electrode combined, platinum (part no. E31M003) with CL114 cable (part no. A94L114)

Reagents
0.05 mol/l iodine solution:
Dissolve 40 g of potassium iodide in 50 ml of distilled water then add 12.69 g of analytical grade iodine, wait for complete dissolution and complete to 1.000 ml with a volumetric flask. Store the solution in a brown glass bottle.

Vitamin C formula

\[
\begin{align*}
\text{HO} & \quad \text{OH} \\
\text{O} & \quad \text{CH} \quad \text{CHOH} \quad \text{CH}_2\text{OH}
\end{align*}
\]

The redox titration is a two-step reaction.
First step
Oxidation of Vitamin C with excess iodine (I\(_2\)).
The redox reaction involves the two –OH groups according to:

\[
\text{HO} - \text{C} = \text{C} - \text{OH} + \text{I}_2 \quad \rightarrow \quad \text{O} = \text{C} - \text{C} = \text{O} + 2\text{I}^- + 2\text{H}^+
\]

Second step
The iodine excess is then determined by sodium thiosulphate according to:

\[
\text{I}_2 + 2\text{S}_2\text{O}_3^{2-} \rightarrow 2\text{I}^- + \text{S}_4\text{O}_6^{2-}
\]

As results are generally expressed in mg/l, % or mg/kg, note that the molar weight of the Vitamin C is 176.3 g/mol corresponding to the global formula C\(_6\)H\(_8\)O\(_6\). The molar weight of sodium ascorbate (C\(_6\)H\(_7\)O\(_6\)Na) is 198.3 g/mol.

Radiometer analytical
0.1 mol/l thiosulphate solution:
Dissolve 24.8181 g of Na₂S₂O₃, 5H₂O in 500 ml of freshly distilled water (or freshly boiled and cooled deionised water) and 2 or 3 drops of CHCl₃ (or 0.4 g of NaOH) and complete to 1000 ml using a volumetric flask.
Wait for one day and filter the solution if necessary (precipitation of sulphur can occur).
Stock the solution in a brown glass flask.

These two solutions are commercially available.

Sodium acetate buffer solution
Dissolve 85 g of sodium acetate (CH₃COONa) in water, add 60 ml of glacial acetic acid and dilute to 1000 ml with freshly distilled water. This solution contains approximately 1 mole of CH₃COOH and 1 mole of CH₃COONa per litre.

Freshly distilled water.

End Point Titration settings

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burette volume (for iodine solution)</td>
<td>25 ml</td>
</tr>
<tr>
<td>(for thiosulphate solution)</td>
<td>10 ml</td>
</tr>
<tr>
<td>Stirring speed</td>
<td>400 rpm</td>
</tr>
<tr>
<td>Working mode</td>
<td>mV >0</td>
</tr>
<tr>
<td>Current</td>
<td>DC</td>
</tr>
<tr>
<td>Current value</td>
<td>5 µA</td>
</tr>
<tr>
<td>Start timer</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Maximum volume</td>
<td>10 ml</td>
</tr>
<tr>
<td>Direction</td>
<td>Increasing mV</td>
</tr>
<tr>
<td>Minimum speed</td>
<td>0.2 ml/min</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>2.00 ml/min</td>
</tr>
<tr>
<td>Back Titration:</td>
<td>Automatic</td>
</tr>
<tr>
<td>(see Back titration note)</td>
<td></td>
</tr>
<tr>
<td>Excess reagent</td>
<td>I₂ 0.05M</td>
</tr>
<tr>
<td>Excess volume</td>
<td>15 ml</td>
</tr>
</tbody>
</table>

Number of end points: 1
End point: 200 mV
Proportional band: 190 mV
End point delay: 5 seconds

Sample unit: g or ml
Sample amount: Depending on the product (see below)

Result:
Molar weight: 198 g/mol
Excess: 2Smp + 2Exc
Reaction: 1Exc + 2Titr
(see Result note)

Inflection Detection settings

Continuous IP mode

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burette volume (for iodine solution)</td>
<td>25 ml</td>
</tr>
<tr>
<td>(for thiosulphate solution)</td>
<td>10 ml</td>
</tr>
<tr>
<td>Stirring speed</td>
<td>400 rpm</td>
</tr>
<tr>
<td>Working mode</td>
<td>mV</td>
</tr>
<tr>
<td>Start timer</td>
<td>10 seconds</td>
</tr>
<tr>
<td>Maximum volume</td>
<td>10 ml</td>
</tr>
<tr>
<td>Direction</td>
<td>Decreasing mV</td>
</tr>
<tr>
<td>Minimum speed</td>
<td>0.2 ml/min</td>
</tr>
<tr>
<td>Maximum speed</td>
<td>4.00 ml/min</td>
</tr>
<tr>
<td>Smoothing parameter</td>
<td>5</td>
</tr>
<tr>
<td>Back Titration:</td>
<td>Automatic</td>
</tr>
<tr>
<td>(see Back titration note)</td>
<td></td>
</tr>
<tr>
<td>Excess reagent</td>
<td>I₂ 0.05M</td>
</tr>
<tr>
<td>Excess volume</td>
<td>15 ml</td>
</tr>
</tbody>
</table>

Inflection No 1
Minimum ordinate: 230 mV
Maximum ordinate: 350 mV
Sample unit: g or ml
Sample amount: Depending on the product (see below)

Result:
Molar weight: 198 g/mol
Excess: 2Smp + 2Exc
Reaction: 1Exc + 2Titr
(see note Result)

Procedure

Using a biburette Titration Manager, fill burette 1 with thiosulphate solution and burette 2 with iodine solution.
With a monoburette Titration Manager, fill the burette with thiosulphate solution, and add the iodine solution manually.
Connect the electrode.
Add 10 ml of sodium acetate buffer solution and, if necessary, freshly distilled water to the sample.
Dip electrode and delivery tip in the solution and run the titration.

Results

The general formula for result expression is:
\[C_{\text{amp}} = \frac{1}{K_{\text{amp}}} \times (C_{\text{exc}} \times V_{\text{exc}} - (C_{\text{tr}} \times V_{\text{tr}}/2)) \]
- \(\frac{1}{K_{\text{amp}}} \) is a function of the sample amount and unit
- \(C_{\text{exc}} \) concentration of the iodine solution in mol/l
- \(V_{\text{exc}} \) added volume of iodine solution in ml
- \(C_{\text{tr}} \) concentration of titrant solution in mol/l (thiosulphate solution)
- \(V_{\text{tr}} \) used volume of thiosulphate solution in ml

Using the above-mentioned coefficients for excess and reaction, the Titration Manager takes into account this formula for result calculation.

For 3 determinations with a food preservative
This is a mixture of sodium chloride, sodium acetate and vitamin C
Mean: 6.55%
Working range

Using an iodine solution with a concentration of 0.05 mol/l, 1 ml of the iodine solution reacts with 0.05 mmole corresponding to 8.81 mg of Vitamin C. Take this into account to determine the approximate amount of iodine solution necessary for the reaction and add an excess corresponding to approximately 50% of this volume.

For low concentrations, it is possible to use 0.005 mol/l iodine solution and 0.01 mol/l thiosulphate solution.

Notes

Back titration
Set "AUTOMATIC" using a biretta Titration Manager. With a monoburette system, set "MANUAL" and enter excess reagent concentration and volume. Other settings are unchanged.

Result
Note that, in back titration, the Titration Manager asks for the SAME COEFFICIENTS for sample and titrant. It is therefore compulsory to set the titration system as indicated.
Copper in Electroplating Copper Baths
(Redox Titration Method)

Introduction
Electroless copper baths, used in particular in the manufacture of printed circuits, contain copper salts, sodium hydroxide stabilising agents and formol, but many electroplating copper baths contain acids (H₂SO₄) or cyanide ion. For these baths, copper determination can involve a redox titration instead of E.D.T.A.

Principle
The redox titration of copper ion involves a two-step reaction:

First step: oxidation of iodide ion I⁻ by Cu²⁺ with iodine formation

\[2Cu^{2+} + 4I^- \rightarrow 2CuI + I_2 \]

Second step: titration of generated I₂ with thiosulphate ion

\[I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^- \]

Regarding the 2 reactions, 1 mole of Cu²⁺ corresponds to 1 mole of S₂O₃²⁻.

The titration uses a combined platinum/reference electrode.

Electrode and reagents
MC3051Pt combined platinum/reference electrode (part no. E31M003)
CL114 connecting cable (part no. A94L114)

Potassium iodide solution
Dissolve 80 g of potassium iodide in 1000 ml of distilled water.

Glacial acetic acid

Sodium thiosulphate solution
0.1 mol/ (or 0.1N) Na₂S₂O₃, 5H₂O has a molecular weight corresponding to 248.181 g/mol

To prepare a 0.1 equivalent/l (or 0.1 mol/) sodium thiosulphate solution; dissolve 24.8181 g of Na₂S₂O₃, 5H₂O in 500 ml of freshly distilled water (or freshly boiled and cooled desionised water) and 2 or 3 drops of CHCl₃

Inflection Detection

Settings
CONTINUOUS IP MODE

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burette volume</td>
<td>10 ml</td>
</tr>
<tr>
<td>Stirring speed</td>
<td>500 rpm</td>
</tr>
<tr>
<td>Working mode</td>
<td>mV</td>
</tr>
<tr>
<td>Start timer</td>
<td>5 min</td>
</tr>
<tr>
<td>Maximum volume</td>
<td>10 ml</td>
</tr>
</tbody>
</table>
Copper in Electroplating Copper Baths (Redox Titration Method)

Procedure

For a sulphuric acid/Copper bath

For an expected concentration of CuSO$_4$ close to 75 g/l, pipette 1 ml of sample, add 10 ml of distilled water and 15 ml of CH$_3$ COOH and complete to 60 ml with distilled water.

Stir the solution and add 5 ml of KI solution.

The solution becomes dark yellow and cuprous iodide precipitates.

Run the titration.

The start timer set to 5 minutes allows a complete reduction of Cu$^{2+}$.

At the end of the titration, the solution may be colourless with a white precipitate of cuprous iodide.

The complete sample preparation and titration procedure change according to the sample composition.

As a general rule, the copper reduction (first step reaction) and the iodine reduction (titration) take place in acidic media (pH 2.00/4.00).

Results

As indicated, 1 mole of Cu$^{2+}$ corresponds to 1 mole of S$_2$O$_3^{2-}$.

\[
R(g/l) = \frac{V_{\text{titr}} \cdot C_{\text{titr}} \cdot 159.58}{V_{\text{smp}}}
\]

\(V_{\text{titr}}\) = Total volume of titrant used in ml

\(C_{\text{titr}}\) = Concentration of titrant in mol/l

\(V_{\text{smp}}\) = Sample volume in ml

159.58 = Molar weight of CuSO$_4$ in g/mol

3 determinations on the same bath

Mean: 74.20 g/l

Standard deviation: 0.2 g/l

Working range

The table below can be used as a guideline according to the copper concentration:

<table>
<thead>
<tr>
<th>CuSO$_4$ conc. g/l</th>
<th>10</th>
<th>80</th>
<th>160</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample ml</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Burette capacity ml</td>
<td>10</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td>KI added</td>
<td>5</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>Titrant used</td>
<td>6.25</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

This table takes into account the above-mentioned concentrations for reagents and titrants.

Instead of 1 ml for sample amount, it is possible to take 10 ml of sample diluted to 100 ml with a volumetric flask and use 10 ml of the diluted solution.

In this case, modify the Titration Manager settings as follows:

Sample unit: ml

Dilution: YES

Sample amount: 10

Final dilution amount: 100

Aliquot: 10

Notes

Procedure:

Addition of KSCN (potassium thio-cyanate) avoids adsorption of I$_2$ on Cul and improves accuracy of the method.

Depending on the bath composition, it can be necessary to change the sample preparation. If the solution contains cyanide ion, add 3 ml of sulphuric acid and 1 ml of nitric acid to 1 ml of sample under a hood, gently boil until white fumes are released then add water and ammonium hydroxide to pH 6.0 and then glacial acetic acid.

To obtain a well-shaped titration curve as shown in the graph and a correct result, make sure sufficient glacial acetic acid is added.

Curve

RADIOMETER ANALYTICAL SAS
72 rue d’Alsace, 69627 Villeurbanne Cedex, France
E-mail: radiometer@analytical.com Web: www.radiometer-analytical.com
Tel.: +33 (0)4 78 38 38 38 - Fax: +33 (0)4 78 68 88 12
Peroxide Number of Edible Oils
(NF T 60-220 (1995) and ISO 3960 (2001))

Introduction
The peroxide number is a measurement of the concentration of (-O-O-) groups in edible oils. It is a measurement of the decomposition of the product and in many countries, official standards specify a maximum peroxide number beyond which the oil is unfit for human consumption. The peroxide number is therefore measured by oil manufacturers during production and after storage to check its preservation.

International standards use a redox titration in non-aqueous media, results are generally expressed in µg of peroxide (or active oxygen) per gram of product but mmoles/kg or meq of O₂/kg are also used.

The following two standards use the same titration principle but not the same solvents.
NF T 60-220 uses chloroform CHCl₃
ISO 3960 uses isooctane C₈H₁₈

According these two standards, the equivalence point of the redox titration is determined using starch as colour indicator, but it is very easy to use potentiometric determination.

Summary
Peroxide number determination involves a two-step redox reaction:
1) Reaction of peroxide group with an excess of iodide ion according to:

 \[
 R-O-O-R + 2I^- + 2H^+ \rightarrow 2ROH + I_2
 \]

2) Titration of iodine with Na₂S₂O₃ solution (generally 0.01 or 0.02M) according to:

 \[
 I_2 + 2S_2O_3^{2-} \rightarrow 2I^- + S_4O_6^{2-}
 \]

The titration is run according to inflection detection with continuous addition of the titrant with a combined platinum/reference electrode.

Electrode and reagents
MC3051Pt-9 Metal electrode, combined, platinum (part no. E31M003) with CL114 cable (part no. A94L114).

Glacial acetic acid (CH₃COOH)
Chloroform (CHCl₃) (NF T 60-220)
Isooctane C₈H₁₈ (ISO 3960)

Solvent used for ISO 3960
Acetic acid/isoctane solution by mixing of 3 volumes of glacial acetic acid and 2 volumes of isooctane.

Saturated aqueous solution of potassium iodide (KI)
Note that the solubility of KI in water is approximately 150g/100 ml of water.

Do not prepare too a large volume of this solution. Store it in the dark.

Distilled water
Sodium thiosulphate solution 0.01M (or 0.02 mol/l) in water (Na₂S₂O₃)
To prepare a 0.01 mol/l (or 0.02 mol/l) sodium thiosulphate solution, dissolve 2.4818 g (or 4.9636 g) of Na₂S₂O₃. 5H₂O in 500 ml of freshly distilled water (or freshly boiled and cooled deionised water). Add 2 or 3 drops of CHCl₃ (or 0.4 g of NaOH), as stabilising agent, and complete to 1000 ml using a volumetric flask.
Wait for one day and filter the solution if necessary (precipitation of sulphur can occur).

Stock the solution in a brown glass flask.

From time to time, look at the solution and filter or standardise again if necessary.

Na₂S₂O₃·5H₂O has a molecular weight corresponding to 248.181 g/mol.

As solutions with a concentration corresponding to 0.01M are not very stable, do not store this solution for more than 1 week.

As Sodium thiosulphate solution 0.1M is commercially available, you can prepare the 0.01 or 0.02M solution by dilution.

Check that solvents and reagents do not contain dissolved oxygen.

Bubbling nitrogen in the different solutions is one way to do this.

Inflection Detection settings

CONTINUOUS IP MODE

Titration: Decreasing potential Inflection number:	1
Inflection 1:	
Min. ordinate:	150 mV
Max. ordinate:	280 mV
Stop at last IP:	YES

Sample	
Dilution:	NO
Sample unit:	g
Sample amount:	2

(see working range)

Results

Result 1: Unit: mg/kg
Reaction: 1 sample + 2 Titrant
Molar weight: 16 g/mol

No of equations: 2

Equation 1	
Unit:	mmoles O₂/kg
Formula:	R₁/16

Equation 2	
Unit:	meq O₂/kg
Formula:	R₁/8

Procedure according to ISO 3960

The general procedure is exactly the same as for NF T 60-220.

Weigh the necessary sample amount.

Dilute with 50 ml of the isooctane/acetic acid solution.

Add 0.5 ml of potassium iodide solution and stir for 1 minute then add 30 ml of distilled water.

Results

Expressed as µg/g (or mg/kg) of active oxygen the results corresponds to:

\[R = \frac{C_{\text{titr}} \times V_{\text{titr}} \times 16 \times 1000}{2 \times W_{\text{smp}}} \]

where:

- \(C_{\text{titr}} \) = Titrant concentration in mol/l
- \(V_{\text{titr}} \) = Necessary titrant volume in ml
- 1000 = Constant to express the result in µg
- 16 = Molar weight of oxygen
- 2 = As 2 moles of titrant correspond to 1 mole of sample
- \(W_{\text{smp}} \) = Weighed amount of sample in g

Some other units can be used for result expression.

Result in mmoles/kg corresponds to: \(R/16 \)
Result in meq of active oxygen/kg corresponds to: \(R/8 \)

Results

3 determinations on old peanut oil

Mean: 192.8 mg/kg
(standard deviation: 2.6)
12.05 mmoles O₂/kg
(standard deviation: 0.16)
24.10 meq O₂/kg
(standard deviation: 0.33)

(blank determination: 0.107 ml)
Peroxide Number of Edible Oils (NF T 60-220 (1995) and ISO 3960 (2001))

Working range

Use the following table which summarises the data in both standards to determine the necessary amount of sample:

<table>
<thead>
<tr>
<th>Peroxide number µg/g or mg/kg</th>
<th>Peroxide number meq/kg</th>
<th>Sample amount (g)</th>
<th>Titrant volume (ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-100</td>
<td>0-12</td>
<td>5.0-2.0</td>
<td>2.4</td>
</tr>
<tr>
<td>100-150</td>
<td>12-18.75</td>
<td>2.0-1.2</td>
<td>2.25</td>
</tr>
<tr>
<td>150-250</td>
<td>18.75-31.25</td>
<td>1.2-0.8</td>
<td>2.25-1.5</td>
</tr>
<tr>
<td>250-400</td>
<td>31.25-50</td>
<td>0.8-0.5</td>
<td>1.5-2.5</td>
</tr>
<tr>
<td>400-700</td>
<td>50-87.5</td>
<td>0.5-0.3</td>
<td>2.5-2.6</td>
</tr>
</tbody>
</table>

(*) Calculated with oleic acid molar weight
(**) For a 0.1M titrant

Notes

Procedure

The main difficulty is to obtain reproducible results avoiding the influence of atmospheric oxygen.

Note that the saturated solution of potassium iodide is highly oxidisable. It is necessary to check this solution using the thiosulphate 0.01M solution according to the procedure described in the standards.

Low values for blanks are recommended (between 0.05 and 0.1 ml according to the standards).

After addition of water, the titration medium is a two-phase solution. Check you immerse the measuring electrode in the aqueous phase. Do not use too high a titration speed, because it is necessary to free all the iodine from the solvent layer.

Curve

![Graph showing the relationship between mV and milliliters](image-url)
Hydrogen Peroxide Determination
(by manganimetric titration)

Introduction

Discovered in 1818 by a French chemist, L.J Thenard, Hydrogen peroxide (H₂O₂) is a common oxidising agent used in papermaking as well as in the textile or pharmaceutical industry. It is used for disinfecting and colour removal.

The dismutation reaction of hydrogen peroxide corresponds to the following equations:

\[\text{H}_2\text{O}_2 + 2\text{H}^+ + 2\overline{e} \rightarrow 2\text{H}_2\text{O} \]

\[\text{H}_2\text{O}_2 \rightarrow \text{O}_2 + 2\text{H}^+ + 2\overline{e} \]

The global reaction corresponds to:

\[2\text{H}_2\text{O}_2 \rightarrow 2\text{H}_2\text{O} + \text{O}_2 \] (1)

Principle

H₂O₂ determination generally uses a redox titration using potassium permanganate as oxidising agent according to the following reaction:

\[5\text{H}_2\text{O}_2 + 2\text{MnO}_4^- + 6\text{H}^+ \rightarrow 5\text{O}_2 + 2\text{Mn}^{2+} + 8\text{H}_2\text{O} \]

As indicated, the reaction takes place in acidic media (generally in sulphuric media). The H₂O₂ titration is run using potentiometry with a combined platinum/reference electrode. Results are generally expressed as a % of H₂O₂ or in volumes of oxygen by volume of solution.

The titre as a % indicates the weight of H₂O₂ for 100 g of solution. The titre expressed as the volume of oxygen (in litres) freed by 1 litre of solution.

According to the reaction (1) it is possible to write:

Titre (in volumes) =
\[(10 \times \text{titre (in %)} / d) \times 11.2 / 34 \]

34 = molar weight of H₂O₂

11.2 = volume of ½ mole of O₂ under normal pressure and temperature conditions

\[d = \text{H}_2\text{O}_2 \text{ density} \]

If density is supposed equal to 1:

Titre (in volumes) =
\[\text{Titre (in %)} \times 3.294 \]

Electrode and reagents

MC3051Pt-9 Metal Electrode combined, platinum (part no. E31M003) with CL114 cable (part no. A94L114)

25% v/v H₂SO₄ solution in distilled water

Dilute 250 ml of concentrated sulphuric acid in 750 ml of distilled water. This operation is very exothermic, so perform the dilution very slowly and respect laboratory safety regulations. Let the solution cool to room temperature. This solution is approximately 9N or 4.5M.

KMnO₄ solution (M/50 or 0.02M; note this solution is N/10)

Using a volumetric flask, dilute 3.160 g of potassium permanganate in 500 ml of distilled water, add 10 ml of 25% sulphuric acid solution, leave to cool to room temperature and complete to 1000 ml with distilled water.

Store in a brown flask. Note that this solution is commercially available.

Distilled water
Hydrogen Peroxide Determination (by manganimetric titration)

Inflection Detection Settings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burette volume</td>
<td>25 ml</td>
<td>(see Working range)</td>
</tr>
<tr>
<td>Stirring speed</td>
<td>650 rpm</td>
<td>(see Stirring)</td>
</tr>
<tr>
<td>Working mode</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>Start timer</td>
<td>15 s</td>
<td></td>
</tr>
<tr>
<td>Maximum volume</td>
<td>25 ml</td>
<td></td>
</tr>
<tr>
<td>Stop point</td>
<td>1250 mV</td>
<td></td>
</tr>
<tr>
<td>Direction</td>
<td>Increasing mV</td>
<td></td>
</tr>
<tr>
<td>Predose</td>
<td>10.0 ml</td>
<td>(see Predose note)</td>
</tr>
<tr>
<td>Minimum speed</td>
<td>0.2 ml/min</td>
<td></td>
</tr>
<tr>
<td>Maximum speed</td>
<td>4.00 ml/min</td>
<td></td>
</tr>
<tr>
<td>Smoothing parameter</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Minimum ordinate</td>
<td>750 mV</td>
<td></td>
</tr>
<tr>
<td>Maximum ordinate</td>
<td>1100 mV</td>
<td></td>
</tr>
<tr>
<td>Stop at last IP</td>
<td>YES</td>
<td></td>
</tr>
<tr>
<td>Sample unit</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td>Sample amount</td>
<td>11</td>
<td>(see Sample amount note)</td>
</tr>
<tr>
<td>Dilution</td>
<td>YES</td>
<td>(see Working range)</td>
</tr>
<tr>
<td>Final dilution amount</td>
<td>1000 ml</td>
<td></td>
</tr>
<tr>
<td>Aliquot</td>
<td>10 ml</td>
<td></td>
</tr>
<tr>
<td>Result number</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Molar weight</td>
<td>34 g/mol</td>
<td></td>
</tr>
<tr>
<td>Reaction</td>
<td>5Smp + 2Titr</td>
<td></td>
</tr>
<tr>
<td>Equation number</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Equation unit</td>
<td>conc. (volumes)</td>
<td></td>
</tr>
<tr>
<td>Equation</td>
<td>R1*3.294</td>
<td>(see Equation note)</td>
</tr>
</tbody>
</table>

Procedure

1. Dilute the sample according to the dilution factor described under Working range.
2. In the titration beaker pipette the recommended sample aliquot (see Working range).
3. Add a sufficient quantity of distilled water and 10 ml of the 25% v/v sulphuric acid solution.
4. Immerse the combined platinum/reference electrode.
5. Run the titration.

Results

Results can be expressed in two different units

\[
R(\%) = \left(\frac{5 \cdot C_{\text{tir}} \cdot V_{\text{tir}}}{2 \cdot V_{\text{smp}}}\right) \times (34/10)
\]

5 and 2 = Reaction coefficients
C_{tir} = Titrant concentration
V_{tir} = Used titrant volume
V_{smp} = Used sample volume
34 = Molar weight of H_2O_2
10 = factor to express result as a %

\[
R(\text{volumes}) = R(\%) \times 3.294 / d
\]

\[
d = \text{Sample density (in g/ml or kg/l)}
\]

Experimental results on commercial hydrogen peroxide

4 determinations

<table>
<thead>
<tr>
<th>% w/w</th>
<th>Titre (vol.)*</th>
<th>Molarity*</th>
<th>F. dilution</th>
<th>Aliquot</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>19.8</td>
<td>1.8</td>
<td>10</td>
<td>5 ml</td>
</tr>
<tr>
<td>30</td>
<td>99</td>
<td>8.8</td>
<td>100</td>
<td>10 ml</td>
</tr>
<tr>
<td>40</td>
<td>130</td>
<td>11.8</td>
<td>200</td>
<td>10 ml</td>
</tr>
</tbody>
</table>

(*) Approximate value with d = 1

Notes

- **Sample amount**: 10 ml are pipetted and weighed.
- **Stirring speed**: Use a sufficiently high stirring speed to allow the oxygen bubbles generated during the reaction to leave the solution.
- **Predose**: The predose function can be used to save time. Modify this volume according the expected volume of titrant.
- **Equation**: If H2O2 density is known modify to the equation as follows

\[
\text{Equation} = R1 \times 3.924 / d
\]

\[
d = H_2O_2 \text{ density}
\]

Working range

Using a 25 ml burette and according to the expected concentration of the hydrogen peroxide, refer to the following table to choose the dilution factor and sample aliquot for the titration.
Hydrogen Peroxide Determination (by manganimetric titration)

Curve

![Direct curve graph](image)

Direct curve
Dissolved Oxygen in Water

Introduction

Determination of dissolved oxygen (DO) is essential in water analysis, as oxygen is required for survival and growth by many organisms. For this determination, 2 standards are most commonly used based on the same procedure but using different reagent concentrations.

Principle

The principle used is a modified Winkler titration with a 3-step analysis.

Step one: reaction between dissolved oxygen and divalent manganese Mn$^{2+}$ according to

\[O_2 + 4Mn^{2+} + 8OH^- + 2H_2O \rightarrow 4Mn(OH)_3 \]

Step two: reduction of Mn(OH)$_3$ by I$^-$ in acidic media according to

\[4Mn(OH)_3 + 4I^- + 12H^+ \rightarrow 4Mn^{2+} + 2I_2 + 12H_2O \]

Step three: titration of I$_2$ using sodium thiosulphate according to

\[2I_2 + 4S_2O_3^{2-} \rightarrow 4I^- + 2S_4O_6^{2-} \]

At the end, 1 molecule of O$_2$ corresponds to 4 molecules of S$_2$O$_3^{2-}$.

The titration of I$_2$ by S$_2$O$_3^{2-}$ can be an end point titration using imposed current potentiometry and a two Pt-Pt wire electrode or an inflection point titration with continuous addition mode.

Electrode and reagents

The reagent concentrations vary depending on the standard used (see table):

<table>
<thead>
<tr>
<th>European standard</th>
<th>US standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOL 1 MnSO$_4$, H$_2$O</td>
<td>SOL 1 MnSO$_4$, H$_2$O</td>
</tr>
<tr>
<td>380 g/l in water</td>
<td>364 g/l in water</td>
</tr>
<tr>
<td>SOL 2 KIO$_3$</td>
<td>SOL 2 KIO$_3$</td>
</tr>
<tr>
<td>0.3567 g/l in water (1/600 mol/l = 0.00167 mol/l = 0.01 eq/l) (for titrant calibration)</td>
<td>0.8124 g/l in water (0.0021 mol/l) (for titrant calibration)</td>
</tr>
<tr>
<td>SOL 3 Na$_2$S$_2$O$_3$, 5H$_2$O</td>
<td>SOL 3 Na$_2$S$_2$O$_3$, 5H$_2$O</td>
</tr>
<tr>
<td>2.48 g/l in water (0.01 mol/l) 0.4 g/l NaOH (Titrant)</td>
<td>6.205 g/l in water (0.025 mol/l) 0.4 g/l NaOH (Titrant)</td>
</tr>
<tr>
<td>SOL 4 H$_2$SO$_4$ 50% vol./vol. in water</td>
<td>SOL 4 H$_2$SO$_4$ concentrated</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>SOL 5 NaOH 35 g</td>
<td>SOL 5 A</td>
</tr>
<tr>
<td>NaI 27 g</td>
<td>NaOH 480 g or NaOH 500 g</td>
</tr>
<tr>
<td>NaN$_3$ 1 g</td>
<td>NaI 750 g NaI 135 g</td>
</tr>
<tr>
<td>In 100 ml of water</td>
<td>NaN$_3$ 10 g NaN$_3$ 10 g</td>
</tr>
<tr>
<td>In 500 ml of water</td>
<td>In 1000 ml of water</td>
</tr>
</tbody>
</table>

KI solid state (for titrant calibration)
Distilled water
Electrode for end point titration
MC231Pt2 Metal Electrode with two Pt-Pt wires with adapter part no. A94P801 (BNC 2 banana) or M241Pt2-8 Metal Electrode.

Electrode for inflection point titration
MC3051Pt-9 Metal Electrode, combined platinum/reference (part no. E31M003) with cable part no. A94L114.

End Point Titration settings
- Burette volume: 25 ml
- Maximum volume: 25 ml
- Working mode: mV with i = 1µA (DC)
- Stirring speed: 600 rpm
- Number of end points: 1
 - End point: 200 mV
 - Stirring delay: 40 seconds
 - Minimum speed: 0.1 ml/min
 - Maximum speed: 2.5 ml/min
 - Titration: Increasing potential
 - Proportional band: 150 mV
 - End point delay: 5 seconds
- Sample unit: ml
- Dilution: YES
- Sample amount: 300
- Final dilution amount: 302
- Aliquot: 200
- Result1
 - Unit: mg/l
 - Reaction: 1 sample + 4 titrant
 - Molar weight: 32 g/mol

Inflection Detection settings
- Continuous IP mode

Procedure
Set up the Titration Manager with SOL 3 as titrant.
Connect the two Pt/Pt wire or combined platinum/reference electrode.
Enter the titrant concentration (use mol/l or mmol/l) in the Titration Manager.
Add 1 ml of SOL 1 and 1 ml of SOL 5 to the sample collected in a bottle (generally 300 ml).
Stopper the bottle securely and mix the solution by turning the bottle upside down several times.
Leave the solution. When precipitate has settled sufficiently (half of the bottle) add 1 ml of SOL 4 and stopper the bottle. Mix the solution by turning the bottle upside down until dissolution is complete.
Pipette 200 ml of treated sample.
Dip electrode and delivery tip in the solution.
Start method by pressing the RUN key.

Results
- Expressed as mg/l of O₂ as titrant concentration is expressed in mol/l
- \[R = V(titr) \times C(titr) \times 32 \times 1000 / V(smp) \times 4 \]
 - \(V(titr) \) = Volume of titrant in ml
 - \(C(titr) \) = Concentration of titrant in mol/l
 - 32 = Molecular weight of titrant
 - \(V(smp) \) = Actual sample volume used for titration
 - 4 = Factor according to the fact that 1 molecule of \(O_2 \) corresponds to 4 molecules of \(S_2O_3^{2-} \)

For a result in mg/l of \(O_2 \) you need to take into account the dilution of the sample by reaction reagents as indicated in the Titration Manager settings.

3 determinations on a water sample
- Mean: 15.03 mg/l
- Standard deviation: 0.108 mg/l
- Relative standard deviation: 0.7%

Working range
Note that according to the above-mentioned formula, for 200 ml of sample and with a titrant concentration of 0.025 mol/l:

1 ml of titrant corresponds to 1 mg/l of DO

The experimental limit of the method is about 2 mg/l.

Notes
SOL 5B is used for samples that are not highly saturated and SOL 5A for "supersaturated" samples. Addition of NaN₃ eliminates interference from NO₂⁻ ions.
For other modifications necessary due to interference, refer to your local standards.

Titrant calibration
If necessary, you can calibrate the sodium thiosulphate solution using the procedure described in application note TTEP01.08MIN (addition of solid state Kl and concentrated acid before titration).
Dissolved Oxygen in Water

With KIO₃ (European standard)
In this case, 1 molecule of KIO₃ corresponds to 6 molecules of Na₂S₂O₃ according to

\[
\text{IO}_3^- + 5\text{I}^- + 6\text{H}^+ \rightarrow 3\text{I}_2 + 3\text{H}_2\text{O}
\]

\[
3\text{I}_2 + 6\text{S}_2\text{O}_3^{2-} \rightarrow 6\text{I}^- + 3\text{S}_4\text{O}_6^{2-}
\]

Pipette 10 ml of SOL 2, add 1 g of KI, 50 ml of distilled water and 5 ml of sulphuric acid 50% v/v solution.

Enter as standard amount: 10
Standard unit: ml
Standard conc.: 1.67 mmol/l (mM)
Result unit: mmol/l (mM)
Coefficients: 1 standard and 6 titrant

Depending on the titrant and standard concentrations indicated above, around 10 ml of sodium thiosulphate solution is required.

With KH(IO₃)₂ (US standard)
In this case, 1 molecule of KH(IO₃)₂ corresponds to 12 molecules of Na₂S₂O₃

Pipette 10 ml of SOL 2, add 1 g of KI, 50 ml of distilled water and few drops of concentrated sulphuric acid

Enter as standard amount: 10
Standard unit: ml
Standard conc.: 2.1 mmol/l (mM)
Result unit: mmol/l (mM)
Coefficients: 1 standard and 12 titrant

Depending on the titrant and standard concentrations indicated above, around 10 ml of sodium thiosulphate solution is required.

Bibliography

International standard ISO 5813. 1983
European standard EN 25813. 1992
Standard methods for water and wastewater 18th edition (1992) 4-98 part 4500
Iodine Value of Animal and Vegetable Fats and Oils
(EN ISO 3961 (1999) and ISO 3961 (1996))

Introduction

The iodine value of animal and vegetable fats and oils measures the amount of \(-\text{C} = \text{C}\) (double bonds) present in the product. The result is expressed as g of iodine (I₂) per 100 g of sample; the molar weight of I₂ is 253.8 g/mol. Instead of I₂, ISO 3961 and EN ISO 3961 standards use iodine chloride (I Cl) in acetic acid solution, also known as Wijs solution, for this determination.

ISO and EN ISO standards use the reaction of the sample with an excess of Wijs solution followed by the determination of excess of Wijs solution using a redox titration with sodium thiosulphate.

As indicated in standard ISO 3961, potentiometric determination of the equivalence point can be used.

Summary

The iodine value determination involves a three-step operation:

1) Reaction of sample with Wijs solution in excess according to

\[
\text{R-} \cdot \text{C} = \text{C} \cdot \text{R} + \text{I Cl} \rightarrow \text{R-Cl-CCl-R}
\]

2) Reaction of the excess of Wijs solution with potassium iodide according to

\[
\text{I Cl + I}^- \rightarrow \text{I}_2 + \text{Cl}^-
\]

3) Determination of the amount of released iodine according to

\[
\text{I}_2 + 2\text{S}_2\text{O}_3^{2-} \rightarrow 2\text{I}^- + \text{S}_4\text{O}_6^{2-}
\]

According to this three-step operation, the titration is a back titration with a blank. This titration is run according to inflection detection with continuous addition of the titrant with a combined platinum/reference electrode, but it is also possible to work with a pre-set end point titration.

Electrode and reagents

- MC3051Pt combined platinum/reference electrode (part no. E31M003)
- CL114 connecting cable (part no. A94L114)
- Or M241Pt-8 (part no. E32M002) or a M231Pt-2 Metal Electrode (part no. E32M001) with adapter part no. A94P801.

Wijs solution 0.1M (see note below)

This solution is commercially available (e.g. part no. 35 071 from Sigma Aldrich)

Titration solvent: Mix the same volumes of cyclohexane and glacial acetic acid.

Potassium iodide solution: Dissolve 100 g of potassium iodide in 1000 ml of pure water. Store the solution in a brown bottle avoiding oxidation of the iodide ion.
Sodium thiosulphate solution 0.1 mol/ (or 0.1N)

Na$_2$S$_2$O$_3$, 5H$_2$O has a molecular weight corresponding to 248.181 g/mol.

To prepare a 0.1 equivalent/l (or 0.1 mol/) sodium thiosulphate solution; dissolve 24.8181 g of Na$_2$S$_2$O$_3$, 5H$_2$O in 500 ml of freshly distilled water (or freshly boiled and cooled deionised water) and 2 or 3 drops of CHCl$_3$ and complete to 1000 ml using a volumetric flask.

Wait for one day and filter the solution if necessary (precipitation of sulphur can occur).

Stock the solution in a brown glass flask.

Look at the solution from time to time and filter/standardise again if necessary.

This solution is also commercially available.

Distilled or deionised water

Inflection Detection settings

Continuous IP mode

Back titration with blank

- Burette volume: 25 ml or 50 ml
 (see "burette capacity" below)
- Stirring speed: 700 rpm
- Working mode: mV
- Start timer: 20 sec
- Blank: YES
- Min. ordinate: 200 mV
- Max. ordinate: 300 mV

Predose until:

(see "burette capacity" below)

- Maximum volume: 25 ml or 50 ml
- Stop point: 100 mV
- Direction: decreasing mV
- Minimum speed: 0.1 ml/min
- Maximum speed: 5.00 ml/min
- Smoothing parameter: 5

Back Titration:

MANUAL

(see "back titration" below)

Excess reagent: Wijs solution

Excess volume: 20 ml

Excess titre: 0.1

Inflection1:

- Minimum ordinate: 200 mV
- Maximum ordinate: 300 mV
- Stop at last IP: YES

Sample unit: g

Sample amount:

(see "working range" below)

Dilution: NO

Result:

- Molar weight: 253.8 g/mol
- Excess: 2 Smp + 2 Exc

(see "result" below)

Reaction: 1 Exc + 2 Titr

Procedure (see notes)

For blank

For blank determination, prepare a solution in the same way as indicated below but without a sample.

For sample

Weigh the recommended amount of oil (see "working range")

Add the recommended volume of titration solvent (20 or 25 ml).

Add 20 ml (10 ml can sometimes be sufficient) of Wijs solution (see "Wijs solution" and "burette capacity").

Mix the solution and stopper the beaker (or the conical flask).

Leave the solution in the dark for 1 or 2 hours (refer to local standards) until the first step of the reaction is complete. Remember the reaction time depends on the nature of the sample and excess of Wijs solution if results are to be reproducible.

Next add 20 ml of the potassium iodide solution and 100/150 ml of deionised water.

If the procedure uses a conical flask with a ground glass stopper, it is possible to pour the solution into a beaker just before the titration, using deionised water to rinse the flask.

Titrte the blank followed by the corresponding sample.

Results

As the result is generally expressed in g of I$_2$ per 100 g of sample; according to the reactions, the Titration Manager calculates the result according to:

$$R = \left(V_{bl} - V_{smp} \right) \cdot C_{tr} \cdot 253.8 / 2 \cdot W_{smp} \cdot 10$$

V_{bl} = Titrant volume for blank in ml
V_{smp} = Titrant volume for sample in ml
C_{tr} = Titrant concentration in mol/l
253.8 = Molar weight of I$_2$
W_{smp} = Sample weight in g
2 = Stoechiometric factor of the reactions (1 mole of I Cl corresponds to 1 mole of I$_2$ that corresponds to 2 moles of S$_2$O$_3^{2-}$)
10 = Factor expressing result in %

For determination on old peanut oil

Iodine number: 80 g/100 g

Working range

Depending on the expected iodine value, look at the following table to determine the correct sample amount.

<table>
<thead>
<tr>
<th>Iodine value in %</th>
<th>Sample amount in g</th>
<th>Solvent in ml</th>
<th>$V_{bl} - V_{smp}$ in ml</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.5</td>
<td>15</td>
<td>25</td>
<td>17</td>
</tr>
<tr>
<td>1.5 - 2.5</td>
<td>10</td>
<td>25</td>
<td>12 - 19</td>
</tr>
<tr>
<td>2.5 - 5</td>
<td>3</td>
<td>20</td>
<td>6 - 12</td>
</tr>
<tr>
<td>5 - 20</td>
<td>1</td>
<td>20</td>
<td>4 - 16</td>
</tr>
<tr>
<td>20 - 50</td>
<td>0.4</td>
<td>20</td>
<td>6.5 - 16</td>
</tr>
<tr>
<td>100 - 150</td>
<td>0.13</td>
<td>20</td>
<td>10 - 15</td>
</tr>
<tr>
<td>150 - 200</td>
<td>0.1</td>
<td>20</td>
<td>12 - 16</td>
</tr>
</tbody>
</table>

It is important to have a sample amount that corresponds to the volume of the Wijs solution. The quantity of Wijs solution consumed by the sample should be close to 50% of the total amount of Wijs solution added.

Notes
Wijs solution
This solution is inflammable and corrosive.
Work under a hood
Never pipette this solution directly with the mouth, always use a pro-pipette.
Always consult the safety data sheet available from the product supplier before handling.

Burette capacity and maximum volume
According to the reaction between ICl and I^- and titration of I_2 with SO_4^{2-}, if you use 20 ml of ICl 0.1M, the blank determination theoretically needs 40 ml of SO_4^{2-} 0.1M. This should be taken into account when choosing the burette capacity (25 or preferably 50 ml), the maximum volume and the possible predose volume.
Use of the predose may be mandatory in continuous IP titration with a 25 ml burette capacity and saves time in end point titration

Back titration
As it is necessary to wait 1 or 2 hours for a complete reaction, do not use AUTOMATIC back titration.

Procedure
As the titration medium is a two-phase medium, it is advisable to use large diameter beakers and a stirring speed of around 700 rpm in order to obtain efficient mixing of the two phases. Otherwise, some iodine may stay in the organic phase (becoming light violet coloured) giving a false result. According to some publications, it is possible to shorten the reaction time by adding 10 ml of 2.5% mercuric acetate [(CH$_3$COO)$_2$Hg] solution in water as catalyst after the Wijs solution.

Result
For a back titration, the Titration Manager asks for identical coefficients for Sample and Titrant.

END POINT TITRATION
As indicated in application note TTIP-EP02-01AFD (iodometric titration of Vitamin C); it is possible to work with a M241Pt2-8 Metal Electrode (part no. E32M002) or a M231Pt-2 Metal Electrode (part no. E32M001) with adapter part no. A94P801, using imposed current potentiometry.

In this case, the Titration Manager settings should be modified as follows:

<table>
<thead>
<tr>
<th>Working mode:</th>
<th>mV i>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current value:</td>
<td>1 µA</td>
</tr>
<tr>
<td>Direction:</td>
<td>Increasing mV</td>
</tr>
<tr>
<td>Minimum speed:</td>
<td>0.2 ml/min</td>
</tr>
<tr>
<td>Maximum speed:</td>
<td>2.00 ml/min</td>
</tr>
<tr>
<td>Number of end points:</td>
<td>1</td>
</tr>
<tr>
<td>End point:</td>
<td>200 mV</td>
</tr>
<tr>
<td>Proportional band:</td>
<td>190 mV</td>
</tr>
<tr>
<td>End point delay:</td>
<td>5 sec</td>
</tr>
</tbody>
</table>

The other settings are similar to those already described.

Curves

RADIOMETER ANALYTICAL SAS
72 rue d’Alsace, 69627 Villeurbanne Cedex, France
E-mail: radiometer@analytical.com Web: www.radiometer-analytical.com
Tel.: +33 (0)4 78 03 38 38 - Fax: +33 (0)4 78 68 88 12